
8354
Java from the Very Beginning, Part III

Steve Ryder
JSR Systems, Austin, Texas
Stephen Pipes
IBM Hursley Park Labs, United Kingdom 1

Objectives

Learn how to implement methods
Manage source and class files
Understand how to use Java documentation
Look at common problems and their solutions

2

Agenda

Part II recap
Methods
Managing source files
Javadoc
Common problems

3

Recap

for (int i = 0; i < 2; i++) {

 for (int j = 0; j < 3; j++) {

 if (i == j) {

 continue;

 }

 System.out.println("i = " + i + " j = " + j);

 }

}

Which lines are part of the output?
A. i = 0 j = 0
B. i = 0 j = 1
C. i = 0 j = 2
D. i = 1 j = 0
E. i = 1 j = 1
F. i = 1 j = 2

4

Recap

outer: for (int i = 0; i < 2; i++) {

 for (int j = 0; j < 3; j++) {

 if (i == j) {

 continue outer;

 }

 System.out.println("i = " + i + " j = " + j);

 }

}

Which lines are part of the output?
A. i = 0 j = 0
B. i = 0 j = 1
C. i = 0 j = 2
D. i = 1 j = 0
E. i = 1 j = 1
F. i = 1 j = 2

5

Agenda

Part II recap
Methods
Managing source files
Javadoc
Common problems

6

Methods

A method is a named block of code
It may take arguments (parameters)
It may return a value
A method consists of:
1. A method declaration
2. A method body

7

Method Declaration

A method declaration contains:
the name of the method
the return type
the number and type of arguments passed to the method
details of which other classes and objects can call the method
details of any errors or exceptions which can occur in the
method
other modifiers

8

Method Declaration

accessLevel modifiers returnType methodName(
paramList) throws exceptions

accessLevels:
private class
"friendly" or "package" same package
protected package, subclass
public world

9

Method Declaration

accessLevel modifiers returnType methodName(
paramList) throws exceptions

modifiers:
static class method
abstract no method body!
final can't be changed
native another language
synchronized needs a monitor

10

Method Declaration

accessLevel modifiers returnType methodName(
paramList) throws exceptions

return type:
any valid Java type
if your method does not return a value, use void

11

Method Declaration

accessLevel modifiers returnType methodName(
paramList) throws exceptions

method name:
any valid Java identifier
a class may have several methods with the SAME NAME, as
long as those methods are differentiated by the number or
type or their arguments
called overloading

12

Overloading Example

class DataRenderer {

 public void draw(String s) {

 ...

 }

 public void draw(int i) {

 ...

 }

 public void draw(float f) {

 ...

 }

} 13

Method Declaration

accessLevel modifiers returnType methodName(
paramList) throws exceptions

parameter list:
a comma delimited list of variable declarations

type name, type name, ...

name is used within the method body to refer to the argument
arguments are passed by value

14

Method Declaration

accessLevel modifiers returnType methodName(
paramList) throws exceptions

throws list:
a comma delimited list of exceptions that may
 be thrown by the method

A method must either
1. Catch any exceptions that may occur within its body by

providing an exception handler, or
2. Specify that it may throw those exceptions

15

Method Declaration

The simplest possible method declaration:
void doNothing()

Method returning an integer:
int getInteger()

Method to square a number:
int square(int aNumber)

Method to sum two numbers:
int sum(int a, int b)

16

Method Body

Follows method declaration
Enclosed in curly braces: { }
May contain local variable declarations

exist only within scope of the method

Refer to arguments by name
Unless return type is declared void, must contain a
return statement.

17

Method Body

/**
 * Method to sum two numbers and return the result
 * @param a first number
 * @param b second number
 * @return a + b
 */
int sum(int a, int b) {
 int returnValue;
 returnValue = a + b;
 return returnValue;
}

18

Calling Methods

Within the same class:
methodName(args)

A static method of another class:
className.methodName(args)

A method of an object:
objectName.methodName(args)

19

Exercise

Write a program to compute the value of a degree 2
polynomial

20

A Solution

In main...

int polynomialAtX;
for(int x = 0; x <= 10; x++) {
 polynomialAtX = polynomial(x);
 System.out.println(x + "\t\t" + polynomialAtX);
}

Polynomial function:
/**
 * Calculate the polynomial function at x
 */
 public static int polynomial(int x) {
 int returnValue;
 returnValue = (((a * x) + b) * x) + c;
 return returnValue;
 } 21

Agenda

Part II recap
Methods
Managing source files
Javadoc
Common problems

22

Managing Source Files

To make classes easier to find and use, to avoid
naming conflicts, and to control access, programmers
bundle groups of related classes into packages.
A package is a collection of related classes and
interfaces that provides access protection and
namespace management.

23

Creating a package

To create a package, simply put a class or interface
into it
To put a class or interface in a package, put a package
statement at the top of the source file:

package graphics;
class Circle {

...
}

Include the package statement at the top of every file
containing a class to be included in the package

24

Packages

The full name of a class includes its package
The full name of class Circle in package graphics is:
graphics.Circle

By convention, use your company's reversed internet
domain name in your package names

IBM (ibm.com), creates packages beginning com.ibm, e.g.
com.ibm.mq

25

Using Packages

To use a public package member from outside its
package you must either:
1. Use its full (disambiguated) name e.g. java.io.FileReader
2. Import the package member (import java.io.FileReader;)
3. Import the whole package (import java.io.*;)

Import statements are placed after the package
statement, and before any class or interface definitions

26

Using Packages

package com.ibm.graphics;
import java.awt.*;

public class Circle {
...

}

package statement

one or more import
statements

class or interface
declaration(s)

27

Naming and Placing Java files

A public class Foo must be placed in a file Foo.java.
The source file must be placed in a directory whose
name maps the package name

e.g. class Foo in package com.ibm.mq would be
com\ibm\mq\Foo.java
Your CLASSPATH must point to the root of this tree (ie. the
directory with "com" in it)
By default, "." is in the CLASSPATH

28

Agenda

Part II recap
Methods
Managing source files
Javadoc
Common Problems

29

JavaDoc

The documentation format for the Java class libraries
A tool for documenting your own programs
Uses special comment blocks that begin with "/**" and
end with "*/"

30

JavaDoc

Any leading spaces or asterisks are stripped from each
line before processing
A doc comment may contain HTML tags, but should
avoid structural tags such as <H2>
The first sentence should be a summary sentence,
suitable for display on its own.

31

JavaDoc - Class

/**
 * Simple class to represent a Circle.
 * @author Adrian Colyer
 * @version 1.0
 */
public class Circle { ... }

@author --> Author: entry
@version --> Version: entry

32

JavaDoc - Method

/**
 * Calculate the circumference of the circle
 * @return the circle's circumference
 * @see Circle#area
 */
public float circumferece() { ... }

@return --> Returns: entry
@see --> See also: entry

33

JavaDoc - Method

/**
 * Set the centre of the Circle
 * @param x the x co-ordinate of the centre
 * @param y the y-co-odinate of the centre
 */
public void setCentre(int x, int y) { ... }

@param --> adds the parameter and its description to the
"Parameters:" section.

34

JavaDoc - Field

/**
 * The radius of the circle.
 */
public int radius;

35

JavaDoc

javadoc [-d directory -author -version ...] filenames

or...

javadoc [-d directory -author -version ...]
packagename

36

Exercise

Run the javadoc tool

37

Agenda

Part II recap
Methods
Managing source files
Javadoc
Common problems

38

Common Problems

The compiler complains that it can't find a class
Make sure you've imported the class or its package.
Unset the CLASSPATH environment variable, if it's set.
Make sure you're spelling the class name exactly the same way as it is
declared. Case matters!
If your classes are in packages, make sure that they appear in the
correct subdirectory as outlined in Managing Source and Class Files.
Also, some programmers use different names for the class name from
the .java filename. Make sure you're using the class name and not the
filename. In fact, make the names the same and you won't run into
this problem for this reason.

39

Common Problems

The interpreter complains that it can't find a class
Make sure you specified the class name--not the class file name--to
the interpreter.
Unset the CLASSPATH environment variable, if it's set.
If your classes are in packages, make sure that they appear in the
correct subdirectory as outlined in Managing Source and Class Files.
Make sure you're invoking the interpreter from the directory in which
the .class file is located.

40

Common Problems

My program doesn't work!
Did you forget to use break after each case statement in a switch
statement?
Did you use the assignment operator = when you really wanted to use
the comparison operator ==?
Are the termination conditions on your loops correct? Make sure
you're not terminating loops one iteration too early or too late. That
is, make sure you are using < or <= and > or >= as appropriate for
your situation.
Remember that array indices begin at 0

41

Common Problems

My program doesn't work!
Are you comparing floating-point numbers using ==? Remember that
floats are approximations of the real thing. The greater than and less
than (> and <) operators are more appropriate when conditional logic
is performed on floating-point numbers.
Are you trying to change the value of an argument from a method?
Arguments in Java are passed by value and can't be changed in a
method.
Did you inadvertently add an extra semicolon (;), thereby terminating
a statement prematurely?

42

Common Problems

My program doesn't work!
Are you using the correct conditional operator? Make sure you
understand && and || and are using them appropriately.
Do you use the negation operator ! a lot? Try to express conditions
without it. Doing so is less confusing and error-prone.
Are you using a do-while? If so, do you know that the loop executes
one more time than a similar while loop?

43

Summary

Methods are identified by name and arguments
Arguments are passed by value
Group classes into packages
Javadoc is used to document the Java class libraries
and your own code

44

