
8359
Object-oriented Programming with Java,
Part 2

Stephen Pipes
IBM Hursley Park Labs, United Kingdom

Dallas 2003

Intro to Java recap

Classes are like user-defined types
Objects are like variables of those types
We send messages which invoke methods
Classes have a class object

Agenda

Inheritance and relationships
Abstraction and interfaces
Polymorphism
Overloading

The Circle class

class Circle {

 // Data encapsulated by the class
 private SimplePoint center;
 private int radius;

 // Methods that form external interface
 public double circumference() { ... }
 public double area() { ... }
 public SimplePoint getCenter() { return center; }
 public int getRadius() { return radius; }
}

The GraphicCircle class #1

class GraphicCircle {

 // Data encapsulated by the class
 private SimplePoint center;
 private int radius;

 // Methods that form external interface
 public double circumference() { ... }
 public double area() { ... }
 public SimplePoint getCenter() { return center; }
 public int getRadius() { return radius; }

 public void draw(Graphics g) { ... }
}

GraphicCircle #1

It's a cut-and-paste job
Error prone
Two copies of the "Circle" code
Harder to maintain

The GraphicCircle class #2

class GraphicCircle {

 // Data encapsulated by the class
 private Circle circle;

 // Methods that form external interface
 public double circumference() { ... }
 public double area() { ... }
 public SimplePoint getCenter() { return
circle.getCenter(); }
 public int getRadius() { return circle.getRadius(); }

 public void draw(Graphics g) { ... }
}

GraphicCircle #2

Uses existing code and logic for base circle
But, needs lots of annoying wrapper
methods!

The GraphicCircle class #3

class GraphicCircle extends Circle {
 public void draw(Graphics g) { ... }
}

GraphicCircle #3

GraphicCircle is defined as an extension of
the Circle class
We call it a subclass
GraphicCircle has all of the functionality of
Circle, plus its own additional methods (and
data)
We say that GraphicCircle inherits the
functionality of Circle
We call the act of extending a class
inheritance

Inheritance

GraphicCircle is a Circle
You can use it anywhere a Circle is required

public aMethod(Circle c)

You can treat it just like a Circle when you
use it

graphicCircle.getRadius()

Use inheritance when you have an "is a"
relationship

Other key relationships

"is a" -> inheritance
"has a" -> data member (e.g. Circle has a
SimplePoint, its center) - containment
"uses" class A uses class B if:

a method of A sends a message to an object of
class B
a method of A creates, receives or returns
objects of class B
try to minimize the number of classes that use
each other

Agenda

Inheritance and relationships
Abstraction and interfaces
Polymorphism
Overloading

Abstraction and Interfaces

Shape

Circle

Rectangle

Hexagon

general specifc
super class sub class

We extend our super class to create more
specific and useful sub classes

class Circle extends Shape {
protected double r;
protected static final double PI=3.14159265358979323846;

public Circle() { r = 1.0; }
public Circle(double r) { this.r = r; }

public double area() { return PI * r * r; }
public double circumference() { return 2 * PI * r; }
public double getRadius() { return r; }

}

The Circle class can calculate the area and
circumference of a circle only

Abstraction and Interfaces

Abstraction and Interfaces

On the other hand, we want the Shape class
(super-class) to encapsulate whatever
features all our shapes have in common,
such as area and circumference
Since the Shape class is generic to all
shapes, it cannot implement these features,
so we use abstract methods as placeholders
in our Shape class

Abstraction and Interfaces

Abstract classes do not implement
functionality; note the semicolon immediately
after the method definition. For this reason,
they cannot be instantiated, since they
contain no code

public abstract class Shape {
public abstract double area();
public abstract double circumference();

}

Abstraction and Interfaces

Abstraction allows us to group types of class
and deal with them in a standard way
We can group any classes that extend and
implement the abstract Shape class

Abstraction and Interfaces

What is this code doing?

Shape[] shapes = new Shape[2]; // create an array of Shape
shapes[0] = new Circle(2.0); // Circle is element 0
shapes[1] = new Rectangle(1.0, 2.0); // Rectangle is element 1

double total_area = 0;
for (int i = 0; i < shapes.length; i++) total_area += shapes[i].area(); //
compute the total area

Abstraction and Interfaces

Defines a Shape array and populates with
different types of Shape. We do not need to
cast the Circle and Rectangle classes onto
the Shape array, since Circle and Rectangle
inherit from Shape
Calculates the total area of all Shapes in the
array by calling the abstract methods of the
Shape class. The abstract Shape class
provides pointers to the correct methods in
the appropriate sub-classes

We can draw our shapes by defining an
abstract class called DrawableShape, which
provides the abstract methods to draw the
shape
To draw a circle, we define DrawableCircle
which provides the functionality to draw a
circle, pointed to by the abstract
DrawableShape class

Abstraction and Interfaces

Abstraction and Interfaces

We need to calculate a circle before drawing
it, so we extend our Circle class
However, Java does not allow more than
one super class, so we define
DrawableShape as an interface

DrawableShape

DrawableCircle

Circle

Abstraction and Interfaces

DrawableShape

DrawableCircle

Circle

public interface DrawableShape {
public void setColor(Color c);
public void setPosition(double x, double y);
public void draw(DrawWindow dw);

}

Abstraction and Interfaces

Our DrawableCircle class will implement the
DrawableShape interface

public class DrawableCircle extends Circle implements
DrawableShape {

private Color c;
private double x, y;

// Provide a constructor that sets the super-class…
public DrawableCircle(double r) { super(r); }
// Now we implement those methods defined in DrawableShape…
public void setColor(Color c) { this.c = c; }
public void setPosition(double x, double y) { this.x = x; this.y = y; }
public void draw(DrawWindow dw) { dw.drawCircle(x, y, r, c); }

}

Abstraction and Interfaces

Shape[] shapes = new Shape[2]; // create an array of Shape
DrawableShape[] drawables = new DrawableShape[2]; // create an array of drawable shapes

// now we create some drawable shapes…
DrawableCircle dc = new DrawableCircle(1.1);
DrawableRectangle dr = new DrawableRectangle(…);

// since all drawable shapes extend Shape and implement DrawableShape, we can assign the
above drawable classes to both arrays…
shapes[0] = dc;
shapes[1] = dr;
drawables[0] = dc;
drawables[1] = dr;

double total_area = 0;
for (int i = 0; i < shapes.length; i++) {

total_area += shapes[i].area(); // compute the total area
drawables[i].setPosition(i*10.0, i*10.0);
drawables[i].draw(draw_window);

}

Abstraction and Interfaces

Abstract classes may contain both abstract
and implemented methods
Interfaces contain only abstract methods.
There can be no method code in a interface
We may implement many interfaces in Java.
This way, it is possible to implement a larger
set of functionality into a single class.
Constants may be defined in interfaces.
These constants will be available to any
class that implements the interface

Abstraction and Interfaces

Interfaces can have super-interfaces in the
same way that classes can have
super-classes
The one difference is that interfaces can
inherit from more than one super-interface
Should a class implement such an interface,
it must implement the abstract methods
defined in the interface and all its
super-interfaces
java.lang.Runnable implemented by Thread

Agenda

Inheritance and relationships
Abstraction and interfaces
Polymorphism
Overloading

Polymorphism

Something that is polymorphic may appear
in different guises. A polymorphic object may
be cast appropriately to suit

Thread
(extends
Object)

polymorphic

ObjectCAST addElement()

Vector
Object

Polymorphism

Down-casting casts an object to one of its
descendents

Thread
(extends
Object)

polymorphic

Object
elementAt()

downcast

Vector
Object

Polymorphism

We can retrieve our object from the Vector
using the elementAt method. It will be
returned as type Object since it was cast to
type Object before we passed it to the Vector
If we call our object's toString method, it will
be downcast to its original type Thread. Why
is this?

Agenda

Inheritance and relationships
Abstraction and interfaces
Polymorphism
Overloading

Overloading

Method overloading is a useful form of
polymorphism, which allows objects to
behave in exactly the same way irrespective
of the information passed it
In order to overload methods, we define
more than one method of the same name in
a class, but with different types or numbers
of args.
System.out.print method...

void print(Object arg) { … }
void print(String arg) { … }
void print(char[] arg) { … }
…

Overloading

If the print method is invoked with an
argument of unknown type then the compiler
will select the closest match

Date

System.out.print

void print(Object arg)
void print(String arg)
void print(char[] arg)
…

Overloading

A simple addition class. We may pass two or
three integer arguments in to the Addition
object. The same operation will be
performed in either case.

class Addition {
int calc(int a, int b) {

return (a + b);
}
int calc(int a, int b, int c) {

return (a + b + c);
}

}

Overloading

Constructors may also be overloaded

public class Shape {
public Shape(int xPos, int yPos) { … }
public Shape(int xPos, int yPos, int width, int height) { … }

}

We may initialise this class in one of two ways.
new Shape(x,y); // provide x and y positions
new Shape(x,y,w,h); // provide x, y positions & width, height data
new Shape(); // default constructor <--NO!

What do we know?

Abstract classes provide a common interface
to all sub-classes. They cannot be
instantiated
Abstract methods provide no implementation
but are placeholders for methods in
subclasses
Classes may have only one super-class.
Interfaces allow us to extend the functionality
of a class by providing abstract methods.
Interfaces may have many super-interfaces
Polymorphism allows down-casting and

