
Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 1 of 27

Java Introduction to Lab:
Developing Web-based Applications

Using Java Server Pages(JSP) and
Tomcat

Speaker Contact Information
• Steve Ryder sryder@jsrsys.com

www.jsrsys.com (exercise zip files can be found here)…

http://www.jsrsys.com/

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 2 of 27

Advantages of JSP
• vs. Active Server Pages (ASP).

– Technology from Microsoft, requires MS Server.
– Dynamic part written in Java, not an MS-specific language
– It is portable to other operating systems and non-Microsoft Web
servers

• vs. Server-Side Includes (SSI).
– Widely-supported technology for including externally-defined
pieces into a static Web page

– JSP lets you use servlets instead of a separate program to
generate the dynamic part

– SSI is really only intended for simple inclusions, not for "real"
programs that use form data or make database connections

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 3 of 27

• vs. JavaScript.
– Generates HTML dynamically on the client
– Only handles situations where the dynamic information is based
on the client's environment

– HTTP and form submission data is not available to JavaScript
(only exception is cookies)

– Can't access server-side resources like databases, catalogs, or
pricing information

• vs. Static HTML.
– Cannot contain dynamic information.
– Feasible to augment HTML pages with small amounts of dynamic
data using JSP

– The cost of using dynamic data, in HTML, would preclude its use
in all but the most valuable instances

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 4 of 27

• vs. Pure Servlets.
– It is more convenient to write (and to modify!) regular HTML than
println statements that generate the HTML

– By separating the look from the content you can put different
people on different tasks

• Web page design experts can build the HTML
• Java Class programmers to insert the dynamic content

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 5 of 27

Introduction
• Separate dynamic content from static content
• Write static content in HTML
• Enclose dynamic parts in special tags
Example: User clicks on “Super JSP Book” on a web page to order a book.
HTTP call looks like this:
 http://host/OrderConfirmation.jsp?title=Super+JSP+Book
JSP code looks like this:
 You ordered: <I><%= request.getParameter“title”) %> </I>
Web page looks like this:
 You ordered: Super JSP Book

• Normally the source code file is given ‘.jsp’ extension
• Used like a normal web page
• Looks like HTML but is a servlet behind the scenes

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 6 of 27

Servlets
• Servlets are Java technology's answer to CGI
programming

• Programs that run on a Web server and build Web pages
• Building Web pages on the fly is useful (and commonly
done) for a number of reasons:
– The Web page is based on data submitted by the
user.

– The data changes frequently.
– The Web page uses information from corporate
databases or other such sources.

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 7 of 27

–

Servlets Advantages
• It’s Efficient - the Java Virtual Machine stays up, and each

request is handled by a lightweight Java thread, not a heavyweight
operating system process.

• It’s Convenient - you are able to use Java rather than learn
Perl too

• It’s Powerful - you can easily do several things that are
difficult or impossible with regular CGI

• It’s Portable - follows a well-standardized API
• It’s Inexpensive - there are a number of free or very

inexpensive Web servers available that are good for "personal" use
or low-volume Web sites

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 8 of 27

Since Java Server Pages (JSP) are Servlets, all the
benefits of Servlets pertain to JSP

JSP Template Text
• Static HTML portion of the JSP page
• Follows same HTML syntax rules
• Passed straight through to the client

– The exception is JSP tag <% … %>
• Can be generated using any tool for creating web pages

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 9 of 27

•

JSP Syntax Summary
JSP
Element

Syntax Interpretation

JSP
Expression

<%= expression %> Expression is evaluated and placed in
output. out.println(expression);

JSP
Scriptlet

<% code %> Java Code is inserted in service
method.

JSP
Declaration

<%! code %> inserted in body of servlet class,
outside of service method.

JSP page
Directive

<%@ page
att="val" %>

Directions to the servlet engine about
general setup.

JSP
Comment

<%-- comment --%> Comment; ignored when JSP page is
translated into servlet.

JSP include
Directive

<%@ include
file="url" %>

A file on the local system to be
included when the JSP page is
translated into a servlet.

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 10 of 27

JSP Constructs
• Aside from HTML, three main types of constructs
• Scripting elements

– Let you specify Java code that will become part of the
resulting servlet

– A number of predefined variables such as ‘request’
• Directives

– Let you control the overall structure of the servlet
• Actions

– Let you control the behavior of the JSP engine

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 11 of 27

JSP Constructs
 Scripting Elements

• Java code inserted into the servlet that results from
the JSP page.

• Three forms:
– Expressions <%= someJavaExpression %>
– Scriptlets <% if (something) … else … %>
– Declarations <%! inserted in body of servlet class %>
 Declarations are not part of the “service” method
 Variables defined here can be referenced by other methods:
 “out.” and “request.” variables NOT availalable here!
 This is where you can (and must) insert other methods

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 12 of 27

–

JSP Scripting Elements
 Expressions

• Used to insert Java value directly into output
• The Java expression is evaluated, converted to a String,
and inserted into the web page

Example: Use java.util.Date method to display the current
time. JSP code looks like this:

Current time: <%= new java.util.Date() %>
Becomes: out.println(new java.util.Date());

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 13 of 28

JSP Scripting Elements
Expression Variables

• Predefined variables for simplification
• Four common examples are:

–request = HttpServletRequest
–response = HttpServletResponse
–session = HttpSession
–out = PrintWriter

Example: Use the HttpServletRequest.getRemoteHost
method to display the user’s hostname.JSP code looks like
this: Your hostname: <%= request.getRemoteHost() %>

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 14 of 28

JSP Scripting Elements
Scriptlets

• To do something more complex than insert a simple
expression, use scriptlets

• Write your own code and have it executed in the JSP
Example: Calculate the tax amount and display it to the user.
JSP code looks like this:

<%
 String totTax = subtotal * .075;
 out.println(“Total Tax: “, + totTax);
 %>

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 15 of 27

JSP Scripting Elements
Declarations

• Define methods or fields to insert into the main body of
the servlet class
– Executed outside of the service method

• Run only at compile or reboot of servlet
Example: Count number of accesses to web page and
display.JSP code looks like this:

<%! static int accessCount = 0 %>
 Accesses since server reboot:

<%= ++accessCount%>

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 16 of 26

•

JSP Constructs
Directives

• Affect the overall structure of the servlet class
• Two main types:

– Page: set specific attributes
– Include: files included at translation to servlet

<% directive attribute=“value” %>
<%@ directive attribute1=“value1”
 attribute2=“value2” %>

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 17 of 26

JSP Directives
page: Some Common Attributes

Attribute Purpose
Import specify packages to import

import=“package.class”
Extends specifies the superclass of the servlet that will be

generated
extends=“package.class”

Info defines a string that can be retrieved via the
getServletInfo method
info=“message”

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 18 of 26

JSP Directives
include

<%@ include file="relative url" %>

Example: Include the HTML file that has the Navigation bar.
<HTML>
<BODY>
<%@ include file="navbar.html" %>
<!– HTML and Java Code specific to this page
... -->
</BODY>
</HTML>

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 19 of 26

JSP Constructs: Actions
• Use constructs in XML to control the behavior of the
servlet engine
– jsp:include - Include a file at the time the page is
requested

– jsp:forward - Forward the requester to a new page.
jsp:useBean - Find or instantiate a JavaBean.

– jsp:setProperty - Set the property of a JavaBean.
– jsp:getProperty - Insert the property of a JavaBean
into the output.

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 20 of 26

JSP Actions: jsp:include
• Inserts files into the page being generated
• Inserts the file at the time the page is requested
• Small decrease in efficiency
• Page can not contain general JSP code because it is not
inserted at compile time, but rather run time!

• Adds significant flexibility

JSP code looks like this:

<jsp:include page="relative URL"
 flush="true" />

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 21 of 26

jsp:include: An Example
<P>
Here is a summary of our four most recent news stories:

 <jsp:include page="news/Item1.html"/>
 <jsp:include page="news/Item2.html "/>
 <jsp:include page="news/Item3.html "/>
 <jsp:include page="news/Item4.html "/>

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 22 of 26

JSP Actions: jsp:forward
• Forward the request to another page
• One attribute, page, holds the URL
• Could be a static value or could be computed at request
time

JSP code looks like this:
<jsp:forward page=”/utils/errorReporter.jsp” />

<jsp:forward page="<%= someJavaExpression %>" />

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 23 of 26

JSP Actions
jsp:useBean

• Lets you load in a JavaBean to be used in the JSP page
• Very useful capability
• Exploit the reusability of Java classes without sacrificing the

convenience of JSP
JSP code looks like this:
<jsp:useBean id="name" class="package.class"
 scope=”session” />

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 24 of 26

The following combines useBean & jsp:forward:
Authority is set by the Login.jsp script.
<%@page import="com.jsrsys.web.*"%>
<jsp:useBean id="user" class="com.jsrsys.web.JsrUser"
scope="session" />
<% String access = user.getValue("Authority");
 if (access.length()==0 || !access.equals("administrator"))
 {%>
 <jsp:forward page="index.jsp" /><%
 }%>

This code guarantees the user has signed on and has administrator
access, since only the Login.jsp page sets values in “user” class. This
is an example of “session persistence”. The J2EE container manages
the session.

Session: 8360: Java Intro to Lab: Developing Web-based Apps using JSP + Tomcat
Page 25 of 25

JSP Summary
Alternative to Active Server Page, Server-Side Includes,
JavaScript, pure HTML, or Pure Servlets
Separate dynamic content from static (or not)
Looks like HTML but is a servlet!
Syntax <%= expression %> <% service method code %>
<%! Code outside of service method [other methods] %>
<%@ directives %> Example: <%@ include file=abc.txt%>
Contains a number of predefined variables
jsp:forward - goes to new page
jsp:useBean – way to pass data between pages..
See last slide for example combining these two features

Questions?

	Java Introduction to Lab: Developing Web-based Applications
	Using Java Server Pages(JSP) andTomcat
	Speaker Contact Information
	Steve Ryder sryder@jsrsys.com www.jsrsys.com (exercise zip files can be found here)…

	Advantages of JSP
	vs. Active Server Pages (ASP).
	Technology from Microsoft, requires MS Server.
	Dynamic part written in Java, not an MS-specific language
	It is portable to other operating systems and non-Microsoft Web servers

	vs. Server-Side Includes (SSI).
	Widely-supported technology for including externally-defined pieces into a static Web page
	JSP lets you use servlets instead of a separate program to generate the dynamic part
	SSI is really only intended for simple inclusions, not for "real" programs that use form data or make database connections
	vs. JavaScript.
	Generates HTML dynamically on the client
	Only handles situations where the dynamic information is based on the client's environment
	HTTP and form submission data is not available to JavaScript (only exception is cookies)
	Can't access server-side resources like databases, catalogs, or pricing information

	vs. Static HTML.
	Cannot contain dynamic information.
	Feasible to augment HTML pages with small amounts of dynamic data using JSP
	The cost of using dynamic data, in HTML, would preclude its use in all but the most valuable instances

	vs. Pure Servlets.
	It is more convenient to write (and to modify!) regular HTML than println statements that generate the HTML
	By separating the look from the content you can put different people on different tasks
	Web page design experts can build the HTML
	Java Class programmers to insert the dynamic content

	Introduction
	Separate dynamic content from static content
	Write static content in HTML
	Enclose dynamic parts in special tags
	Normally the source code file is given ‘.jsp’ extension
	Used like a normal web page
	Looks like HTML but is a servlet behind the scenes

	Servlets
	Servlets are Java technology's answer to CGI programming
	Programs that run on a Web server and build Web pages
	Building Web pages on the fly is useful (and commonly done) for a number of reasons:
	The Web page is based on data submitted by the user.
	The data changes frequently.
	The Web page uses information from corporate databases or other such sources.

	It’s Efficient - the Java Virtual Machine stays up, and each request is handled by a lightweight Java thread, not a heavyweight operating system process.
	It’s Convenient - you are able to use Java rather than learn Perl too
	It’s Powerful - you can easily do several things that are difficult or impossible with regular CGI
	It’s Portable - follows a well-standardized API
	It’s Inexpensive - there are a number of free or very inexpensive Web servers available that are good for "personal" use or low-volume Web sites

	Since Java Server Pages (JSP) are Servlets, all the benefits of Servlets pertain to JSP
	JSP Template Text
	Static HTML portion of the JSP page
	Follows same HTML syntax rules
	Passed straight through to the client
	The exception is JSP tag <% … %>

	Can be generated using any tool for creating web pages
	Can be generated using any tool for creating web pages
	Can be generated using any tool for creating web pages
	Can be generated using any tool for creating web pages
	Can be generated using any tool for creating web pages
	JSP Expression

	JSP Constructs
	Aside from HTML, three main types of constructs
	Scripting elements
	Let you specify Java code that will become part of the resulting servlet
	A number of predefined variables such as ‘request’

	Directives
	Let you control the overall structure of the servlet

	Actions
	Let you control the behavior of the JSP engine
	JSP Constructs Scripting Elements

	Java code inserted into the servlet that results from the JSP page.
	Three forms:
	Expressions <%= someJavaExpression %>
	Scriptlets <% if (something) … else … %>
	Declarations <%! inserted in body of servlet class %> Declarations are not part of the “service” method Variables defined here can be referenced by other methods: “out.” and “request.” variables NOT availalable here! This is where you can (and must) insert other methods

	JSP Scripting Elements Expressions
	Used to insert Java value directly into output
	The Java expression is evaluated, converted to a String, and inserted into the web page
	Predefined variables for simplification
	Four common examples are:
	request = HttpServletRequest
	response = HttpServletResponse
	session = HttpSession
	out = PrintWriter

	To do something more complex than insert a simple expression, use scriptlets
	Write your own code and have it executed in the JSP
	Define methods or fields to insert into the main body of the servlet class
	Executed outside of the service method
	Run only at compile or reboot of servlet

	JSP Constructs Directives
	Affect the overall structure of the servlet class
	Two main types:
	Page: set specific attributes
	Include: files included at translation to servlet

	JSP Directives include
	<%@ include file="relative url" %>

	JSP Constructs: Actions
	Use constructs in XML to control the behavior of the servlet engine
	jsp:include - Include a file at the time the page is requested
	jsp:forward - Forward the requester to a new page. jsp:useBean - Find or instantiate a JavaBean.
	jsp:setProperty - Set the property of a JavaBean.
	jsp:getProperty - Insert the property of a JavaBean into the output.

	JSP Actions: jsp:include
	Inserts files into the page being generated
	Inserts the file at the time the page is requested
	Small decrease in efficiency
	Page can not contain general JSP code because it is not inserted at compile time, but rather run time!
	Adds significant flexibility
	jsp:include: An Example
	<P>
	Here is a summary of our four most recent news stories:
	
	<jsp:include page="news/Item1.html"/>
	<jsp:include page="news/Item2.html "/>
	<jsp:include page="news/Item3.html "/>
	<jsp:include page="news/Item4.html "/>
	
	JSP Actions: jsp:forward
	Forward the request to another page
	One attribute, page, holds the URL
	Could be a static value or could be computed at request time
	Lets you load in a JavaBean to be used in the JSP page
	Very useful capability
	Exploit the reusability of Java classes without sacrificing the convenience of JSP
	<% String access = user.getValue("Authority");
	if (access.length()==0 || !access.equals("administrator"))
	{%>
	<jsp:forward page="index.jsp" /><%
	}%>

	JSP Summary
	JSP Summary
	JSP Summary
	JSP Summary
	JSP Summary
	JSP Summary
	JSP Summary
	JSP Summary
	Alternative to Active Server Page, Server-Side Includes, JavaScript, pure HTML, or Pure Servlets

