Java Development with Eclipse
Lab 1 Getting Familiar with Eclipse

1. Creating the Project, package and java classes

Create a Project, File>New>Project,
1. Select Project type ‘Java Project’. Select Next.
2. Project name is ‘Lab’. Select Finish.

Create a Package, File>New>Package,
1. Enter ‘Lab’ in “‘Source Folder’ text window.
2. Enter “eclipseLab’ in “name’ text window. Select Finish.

Create a Class, File>New>Class,
1. Enter ‘Lab’ in ‘Source Folder’ text window.
2. Enter “eclipseLab’ in “‘Package’ window.
3. Enter ‘CountPrinter’ in ‘name’ window.
4. Unselect all of the “tick boxes’ in the bottom 3 boxes.
5. Select Finish

Enter the following code in the generated ‘CountPrinter’ class template:

package eclipselLab;

public class CountPrinter {
public CountPrinter(int num)

{
}

System.out._printIn(*“Count = “ num);

Create another Class, File>New>Class,

Enter ‘Lab’ in “Source Folder’ text window.

Enter “eclipseLab’ in ‘Package’ window.

Enter ‘Runlt’ in “‘name’” window.

Tick the “public static void main(String[] args)” ‘tick box’
Select in Finish

ARE I

Enter the following code in the generated ‘Runlt’ class template:

package eclipselLab;
public class Runlt {

public static void main(String[] args) {
int i=0;
int char;
System.out.printlin('Labl™);
while (i++ < 10) {
Countprinter cp = new CountPrinter(i);

}
2. Code Assist

When entering ‘System.out.printin’ notice how after entering ‘System’ and ‘System.out.’
Eclipse displays a list of the objects and methods available in the System and System.out
Classes respectively. System is a java class which enables some properties and behaviour
of the Java Virtual Machine to be configured and retrieved programmatically. Out is a
PrintStream object which is an attribute of System and is the standard output stream.

public static void main(Stringf[] args) {

int 1=0;
= int chag;
System.out,
while (i++ @ sppendicharargd) PrintStream - PrintStream [
5 COUHEHI @ append{CharSequence argd) PrintStream - PrintStream | z f, :
} ST ™" @ append{CharSequence argl, int argl, int arg2) PrintStrez
@ chedkError () boolean - PrintStream
} @ dose) void - Printstream
]. @ equals{Object argl) boolean - Ohject
@ flush{) void - PrintStream
@ format{String argld, Object]] argl) PrintStream - PrintSire|y.
|%] I [2]
Przss 'Crrl+-Space’ to show Templsts Proposzk

3. Correcting the code errors

Code errors have been “placed’ in the code to demonstrate:
1. Icons associated with errors and warnings. Hint, hold the mouse cursor over
the error / warning icon for more information.
Places where errors and warnings are identified
Demonstrate the Quick-Fix function
4. Compilation is done automatically (on file save)

w N

S Lab
B edpacls public class RunIt {
| CountPrinter.java
& | Runlt.java . .
i edipseLabTools : public static void main (String[] args) {
il B, JRE System Library [19vmwi3223-20070426-2dk] int i=0:
" J .
|-l TestP t +
= TestProjec a int g—l}é;;
System.out.
while (i++ @ append{char argd) PrintStream - PrintStream]
E-‘j COUI]tQNI; @ append{CharSequence argl) PrintStream - PrintStream ,- :
} PERRHERETE @ sppend{CharSequence argl, int argl, int arg2) PrintStrez

@ checkError(y boolesn - PrintStream
} @ dose) void - PrintStream
]. @ equale{Object argd) boolean - Object
@ fush() void - PrintStream
@ format{Siring argd, Object[] argl) PrintStream - PrintStre],,
2| I i3]

Press 'Ci+Spacs' o show Templets Propassis

The errors, and corresponding code changes, are:

In Runlt.java

1. Remove ‘int char;” char is a reserve word and can’t be used as an identifier.
2. Right-Click on the error icon on the Countprinter cp = new CountPrinter(i) line
Select Quick-Fix
- public statiec void main(String[] args) {

int i=0;
(D int chazr;

system.out,
while (i++ < 10) {
sinter| cp = new CountPrinter(i);

' Toggle Breakpoint 2n 'E'.

b i P—

Cuick Fix Clrl+1

Add Bookmark...
Add Task, ..

v Show Ouick Diff Cirl+Shift+Q
Show Line Numbers
Folding »

Preferences...

Select “Change to “CountPrinter’ (eclipselLab)”

public static void main(String[] args)

int 1=0;
] int chax:

System.out.

while (i++ < 10) {
i Géuntgriﬁ%ef!cp = new CountPrinter(i):

@ Chanage to 'CountPrinter’ (edipselab)
]' } © Create dass Countprinter ?:i:fn{::;:i—nigrjz'; = new CountPrinter(i};
} € Create interface '‘Countorinter 3

@ Change to 'Counter’ {org.apache. xalan. transformer)
w Change to 'Counter' {org, w3c.dom;css)

@ Change to 'Counter’ {sun.management, counter)

O create erum '‘Countprinter’

e Rename in file (Ctrl+2, R direct ccess)

© Add type parameter 'Countprinter' to 'main{String 1)

In CountPrinter.java
1. Change the print line to the following:
System.out.printIn("’'Count = " + num);

4. For this exercise don’t worry about the warning

: E_cﬂunmw,jaua- 1] Runltjava E3

m package eclipseLab:

public class RunlIt {

int i=0;

Cp is written to but never read.

5. Running the code

To run the application eclipseLab.Runlt()

{

public static void main(String[] args) |

System.out.println "Labl“}ﬂ
while (i++ < 10)
a CountPrinter cp

new CountPrinter(i);

1. “Click’ the drop down arrow next to the run button. Select Run...

|= Java - Runlt.java - Eclipse SDK

File Edt Source Refactor Mavigate Search Project Run Window Help

g ¥-0-Q- S#H G-

[% Package Explorer &2 _| 1 MNew_configuration

e

| S8 i Bl s o

Run As

f}!im-«

= 52 Lab
= {8 edipselab

U] Countprinterjava | 1] Runltjava £3

Organize Favorites..,,

.

=

'+- |1| CountPrinter java
#-{T| Runltijava
fH edipselabTools

&= TestProject

This will bring up the following panel:

B, JAE System Library [j9vmwi3223-20070426-sdk]

=

ok

package eclipsslab;
public class Runlt |

public static wvoid !
int 1=0;
System.out.prin
while (i++ < 10
CountPrinte

-

Sran

Run a Java application

Create, manage, and run configurations

JE %X B3

-4 Edipse Application

B Java Applet
= 3] Java Application
-3 RunIt
-~ Ju Junit
Jti Unit Plug-n Test
E SWT Application

&4 Equinox 056 Framework

Name: | Rurlt

S Main (9= Arquments | @i JRE| ., Classpath | % Source | Fig Environment | (= Common |

~Project:

[1ab | [omse.] |
- Main dlass:

| edlipselab.Runit || search.. |

" include libraties when searching for & main dass:
[Jinclude inherited maine when searching for 2 main class
[C1stop in main

Apply Ravert

[rn [cos

]

Confirm that Main class is eclipseLab.Runlit

Click on the Run button...

Click on the “‘Console’ tab at the bottom of your eclipse workspace to see the output

from your code:

Problems| Javadoc Dedaration | B consale 32

<terminated> Runlt [3ava Application] C:\tools\javalj8ymui3223-20070426-sdkiretbin javan.exe (2 Feb 2008 17:01:43)

Count =
Count
Count =
Count
Count
Count =

(= s B R 1)

S

If you have time...
Try these other cool features if you have some time left or do them in your own time. Each of
the following sections are independent so do them in any order you wish.

6. Refactoring

The goal of refactoring is to allow you to make system-wide code changes without affecting the
semantic behaviour of the system. In this section, we will create a new package, and move the
CountPrinter Class into it, and allow Eclipse to update all references to it.

Create a Package, File>New>Package,
1. Enter ‘Lab’ in “‘Source Folder’ text window.
2. Enter “eclipseLabTools’ in “name’ text window. Select Finish.

Refactor the Code
1. Right-Click on the CountPrinter.java Class in the PackageExplorer.
2. Select Refactor>Move.
3. In the Move pop-up select eclipseLabTools and click preview >.

Note the changes to Runlt.java:

"= Move gﬁ

Changes to'be performed I ap =

[G,i—‘ CountPrinter.java - Lab/edipselab

[¥]45" Runltisva - Labjecipselah

& Update imports

[¥l# Move Compilation Uinit 'CountPrinter.java’ to ‘edipselabTools'

|i| Runltjava

Original Source) o
package eclipseLab;

|Refactored Source. - -
package eclipseLab; ()

public elass RunIt |

public static void main (String[] arg:
int i=0;
System.out.println("Labl");
while (i++ < 10) {
CountPrinter cp = new CountP:

l

L=
v

import sclipselabTools.CountBPrinter; ﬂ

public class RunIt {

public static wvoid main(String[] a
int i=0;
System.out.println("Labl");
while (i++ < 10) {

CountPrinter cp = new Coun

| } v
£ I N 2|

4. Review the changes that will be made then click OK.
5. See that a new import statement has been introduced into the Runlt Class and

CountPrinter has been moved.

6. Try using refactoring to change the name of the CountPrinter Class.

7. Declarations and References

Eclipse has tooling to allow users to find out where the definition of any method is. This is
a declaration.

1. To find a the CountPrinter method declaration, open the Runlt.java file in Eclipse.
2. Hold ctrl down and, using the mouse left click on a CountPrinter call. See how it

skips to the CountPrinter file
public class EunIt {
public static void main(Stringl[] args) |
int 1 = 0;
System.out.println("Labl™);
while (i++ < 1000) {
i CountPrinter cp = new CountPrinter(i);

} } @

3. Try looking for the printIn(...) definition. What source code file does it find?

Eclipse has tooling to allow users to list all calls made in a Project, Workspace or Hierarchy
to any given method. These are references.

1. To find all calls to any given method, open the CountPrinter.java file in Eclipse.
2. Right-Click on the CountPrinter constructor method, select References>Workspace.
See how a search panel opens listing the call to CountPrinter from Runlt.java.

public class CountPrinter {

pu.blic CountPrintariint numi [

| <2 Unda Typin Ciri+Z |
System.cut|™ i + num) ;
Open Dedaration F3
Open Type Hierarchy F4
Open Call Hierarchy Ctrl+alt+H
Quick Qutline Ciri+0
Quick Type Hierarchy Ciri+T
Show In Alt+shift+y b
Paste Cirl+v
Source Alt+shift+s #
Refactor Alt+Shift+T ¥
Local History 4
References * o] Workspace Ctri4Shift 46
Declarations k|) Project
RuA As v | & Hierarchy
-
DEg B Working Set...
Team B

¥

3. Double-Click the entry on the search panel to go to any given occurrence

3F'T'CI|J.|-E‘H‘[5.JaUEdUE;DEdﬂFﬂﬁDHECDﬂs‘DIE Yasks | 4 Search I3
|'edipselab, CountPrinter’ - 2 references in workspace (no JRE) (Om 7. o "ﬂ el A
= _£| ecipseLab - Lab
=8, Runit
i ° man{Stringll) (2 matches)

| Writable Smart Insert 5415

8. So what is this Javadoc thing all about?

Javadoc is a tool for generating documentation just like Sun’s APl documentation
http://java.sun.com/j2se/javadoc/

You can create your own documentation using the facilities provided in the Java
language. The most important thing to note is the use of the special Javadoc comment
commands, /** and */.

So, as a reference, here is some useful syntax:

/**
* Javadoc documentation goes between the opening and
* closing tags and can spread over multiple lines.
*/

Tags include:
@author
@exception
@param
@return
@throws

A Javadoc comment could look something like:
/**
* CountPrinter provides a method to print out a number
* fentono
*/
public class CountPrinter {

1. Document the CountPrinter class

Add a Javadoc comment for the CountPrinter class and another just for the
CountPrinter method in that class. Add several of the tags shown above and view
the Javadoc in the Javadoc window.

2. Export the Javadoc and view in a browser

It’s easy to take the Javadoc from your code and export it as html ready for a
browser.

- Select File>Export>Javadoc.

- Ensure CountPrinter.java is selected

- Click Finish and accept any prompts

Several files should have been created in your workspace. Look for index.html
and double-click. You are now in a standard browser environment (Eclipse has
one built-in), select the CountPrinter class and view the Javadoc you created.

