
Steve Ryder
Session 8352

JSR Systems (JSR)
sryder@jsrsys.com

www.jsrsys.com

Object Oriented Programming
Part II of II

mailto:sryder@jsrsys.com

2

Objectives

Inheritance (ex: Class Dog extends Class Animal)
behaviors common to many animals would be coded in just
Animal, classes such as Dog, Cat, or Tiger are said to inherit
the behaviors of Animal (know as the super class).

Polymorphism (ex: method overloading…)

Abstract (classes with abstract methods can not be
instantiated, only classes that extend them AND implement
the abstract methods can be instantiated)

Interfaces (the solution to multiple inheritance)

3

Inheritance

COBOL: COPY or INCLUDE
Java: Inheritance
++: Much more powerful

Don’t have to recompile to “Inherit”.
The “inheritance” happens at run
time.

4

The Circle class

class Circle {

// Data encapsulated by the class
private SimplePoint center;
private int radius;

// Methods that form external interface
public double circumference() { ... }
public double area() { ... }
public SimplePoint getCenter() { return center; }
public int getRadius() { return radius; }

}

5

The GraphicCircle class inherits..

class GraphicCircle extends Circle
{

public void draw(Graphics g) { ... }
}

6

GraphicCircle extended/inherited…

GraphicCircle is defined as an extension of
the Circle class
We call it a subclass
GraphicCircle has all of the functionality of
Circle, plus its own additional methods
(and data)
We say that GraphicCircle inherits the
functionality of Circle
We call the act of extending a class
“inheritance”

7

Inheritance

GraphicCircle is a Circle
You can use it anywhere a Circle is
required
ƒ public aMethod(Circle c)

You can treat it just like a Circle when you
use it
ƒ graphicCircle.getRadius()

Use inheritance when you have an "is a"
relationship

8

Other key relationships

"is a" -> inheritance
"has a" -> data member (e.g. Circle has a
SimplePoint, its center) - containment
"uses" class A uses class B if:
ƒ a method of A sends a message to an object

of class B
ƒ a method of A creates, receives or returns

objects of class B
ƒ try to minimize the number of classes that

use each other

9

Limits to Subclassing

How many levels deep can you go when
designing subclasses?

Most Java API inheritance hierarchies are wide
but not deep.
Most stay within one to two levels deep.
It’s good practice, generally, to keep your
hierarchy shallow but there is no hard limit that
you are likely to encounter.

10

Do-overs a.k.a. Method Overriding

If you are unable to change the code for a given
class, yet you need to change how it works, you can
extend a class and override the method with new,
better code.

11

Do Not Extend…

There are three things that can prevent a class from
being extended, or subclassed:

1. There is no public declaration.

2. The class has the a final access modifier.

3. The class has only private constructors.

12

Why use final?

Make a class final only if you need the security of
knowing that all methods will work as originally
written.

Make a method final if you want to protect only
certain methods within a class.

13

Rules for Overriding

When overriding a method from a superclass, you
are, in effect, agreeing to a contract.

Here are the rules for overriding a method:
Arguments and return types must be the same.
Access levels on the subclass must be equal to or more lenient
than the superclass.

14

Overloading

Overloading is having two methods with the same
name but different arguments.

Overloaded methods have great flexibility:
1. Return types can be different as long as the arguments are

different types.
2. The return type can not be the only thing changed.
3. You can vary the access levels in any manner.

15

Review

Try to keep class hierarchies one to two levels deep.
Method Overriding can be used as a do-over when you can not
change existing code.
You can not extend a class that has no public declaration, is declared
final, or has private constructors.
Use final to secure a class when you don’t want any of the class to
change.
Use final to secure a method when you only want certain methods to
remain unchanged.
Overriding = agreeing to the superclass’ contract. Arguments and
return types must be the same. Access levels must be the same or
less restrictive.
Overloading = two or more methods with same name but different
arguments (in type or number) and/or return types.

16

Abstract and Interfaces

Abstract classes

Abstract methods

Object class

Interfaces

17

Abstract Classes

Keep duplicate code to a minimum.

Override generic methods.

Flexible because of Animal subtypes that can be
designed in the future and used in any method
expecting an Animal object as an argument.

Creates a common protocol for all animals that
are related to the Animal superclass.

18

Abstract Classes

Sample Animal class hierarchy

Animal

Wolf

Canine Bird Reptile

19

Abstract Classes

Given the class design on the previous slide, the following
declarations are valid:

Animal aBird = new Bird();
Canine aWolf = new Wolf();
Wolf aWolf = new Wolf();

But what about this?
Animal anim = new Animal();

What would an Animal object look like?

Greep!
Greep!

20

Abstract Classes

The Animal class is necessary for the inheritance and
polymorphism we’ve been covering. However …

• Programmers should only be able to instantiate the more concrete subclasses like Wolf or
Hippo because those have shapes, sizes, and behaviors that are well-defined.

To stop a class from being instantiated, make the class
abstract.

abstract class Animal

abstract class Canine extends Animal

21

Abstract Methods

An abstract method must be overridden.

An abstract method has no body.

public abstract void eat();

If you declare a method as abstract, you must
declare the class abstract as well.

22

Abstract Methods

What can an abstract method be used for?
The point of an abstract method is that even without
any actual code, you still have defined part of the
protocol for a group of subclasses.

23

Abstract Methods

What if there are two abstract classes in the
hierarchy?

A subclass can ‘pass the buck.’
If Animal and Canine are both abstract, the first
concrete class to extend Canine must implement all
abstract methods from both Animal and Canine.

24

Review

Abstract classes and methods are useful for keeping
duplicate code to a minimum while maintaining a protocol
for a group of classes.
An abstract class can not be instantiated. This forces the
programmer to instantiate only the more specific (or
concrete) subclasses.
Abstract methods define the behaviors that all subclasses
must have. Each subclass has its own unique way to
implement the behaviors.
The first concrete class in the hierarchy (Wolf from Canine
and Animal) must implement all methods from both
Canine and Animal.

25

The Mother of all Classes

class Object

Every class in Java extends the Object class

Any class that does not explicitly extend another
class implicitly extends Object.

26

The Dot Operator

The Dot operator (.) gives you access to an object’s
state and behavior

//Make a new Object

Dog d = new Dog();

//Call the Dog’s bark method

d.bark();

//Set the size of the Dog

d.size = 40;

27

Object Class Methods

Three methods available to every object

1. equals(Object o)

2. getClass()

3. hashCode()

28

equals()

Tests if one object is equal to another object
Object object1 = new Object;
Object object2 = new Object;
if object1.equals(object2)
{

System.out.println(“True”);
}
else
{

System.out.println(“False”);
}

29

getClass()

Returns the class from which a particular object
was instantiated

Cat c = new Cat();

System.out.println(c.getClass());

Displays “Cat”

30

hashCode() (syntax & the use of
hashcode)

Returns the hashcode (or unique id from memory)
for the object

Cat c = new Cat();

System.out.println(c.hashCode());

Displays, for example: “8202111”

31

The Inner Object

When you instantiate a new object, you get a single
object in memory

The new object is wrapped around the Object class.

new Snowboard();
Object

Snowboard

32

Review

All objects that do not explicitly extend another class
implicitly extend the Object class

There are a number of useful methods in the Object class
that can be used with any object -- equals(), getClass(),
hashCode() are a few examples

Each new object is considered a single object wrapped
around an inner Object class

33

Pet Shop Program

What if the Dog class that was written for any type
of dog was needed as a pet in another program?

The Dog class would need new pet-oriented
methods such as play(), sit(), rollover(), etc..

Let’s review three design options to make this
happen…

34

Pet Shop – Design Option 1

Put pet methods in Animal class
Pros

All Animals instantly inherit pet behaviors
We won’t have to touch existing Animal subclasses
Any Animal subclass created in the future will get the pet methods
Any program wanting to treat animals as pets can use the Animal class
as a polymorphic argument or return type

Cons
ALL animals inherit pet behaviors even lions, tigers, and bears – oh, my!
There are sure to be changes required to the subclasses like Dog and
Cat because they would implement pet behaviors very differently

35

Pet Shop – Design Option 2

Put pet methods in the Animal class but make the
methods abstract, forcing the subclasses to override them

Pros
All the benefits of option1 are realized plus there would be no unwanted
animals with pet attributes
The abstract methods that must be overridden can be empty

Cons
Every subclass of Animal would have to have pet methods even if they
aren’t needed
The existence of Pet methods in the subclasses would be misleading as
pet behaviors would be expected from those methods

36

Pet Shop – Design Option 3

Put the pet methods only in the classes where
they belong
Pros

The pet methods are only where they belong.

Cons
There is no way for other programmers to know what the protocol
for establishing or using pet behaviors and no way for the
compiler to make sure pet-like methods are implemented
correctly
The Animal class could not be used as the polymorphic type
because the compiler will not let you call a pet method on an
Animal reference

37

Pet Shop – Best Design

Create two superclasses: Animal and Pet

Give the Pet class all of the Pet methods

Have subclasses that should use Pet methods
extend both the Animal and Pet classes

38

Interfaces

Java provides a tool called an interface because
you can not extend two classes

An interface is a class with the keyword interface
as part of the class declaration

In an interface, all methods are abstract

All subclasses (of the interface) must implement
the interface’s methods

39

Interfaces

To define an interface

public interface Pet { … }

To implement an interface

public class Dog extends Animal implements Pet { … }

40

Interfaces

Interfaces are extremely flexible because…
You can use interfaces instead of concrete
subclasses as arguments and return types
The classes that implement an interface can
come from any inheritance tree. This allows you
to treat an object by the role it plays and not the
class type used to instantiate it
A class can implement multiple interfaces

41

Review

You can not extend two classes in Java

An interface allows multiple inheritance without
the Deadly Diamond of Death

An interface has all abstract methods

A class can inherit multiple interfaces

