
Java For The Beginner
Part II of III

Theresa Tai
IBM System z New Technology Center
Poughkeepsie, New York
ttai@us.ibm.com

February 25, 2008
Session 8353

2

Housekeeping Reminder

No food or drink in the Lab

Please silent mobile phones

Don't hesitate to ask questions

Have fun!

3

Agenda

Lecture
What is Java?
Java Basics
Java Code Structure

Hands-on Lab
Explore the Eclipse Development Environment
Write and Run Simple Java programs

4

What is Java?

A platform
Software only
Runs on top of hardware platforms
Two components:

• JVM – Java Virtual Machine
• API – Application Programming Interface

A programming language
Compiled and Interpreted

Java software platform consists of
The Java language, JVM and Java class libraries

5

What is Java Language?

A programming language (has some of the characteristic as C++)
Source code in plain text files with a .java extension

Compiled and interpreted
.java source files compiled into .class files

Java
Program

Compiler

Interpreter

Running
Program!

M
yProgram

.java M
yP

ro
gr

am
.cl

as
s 0010110100

6

Java Bytecodes

Instructions for the Java Virtual Machine

Write Once, Run Anywhere
Compiled bytecode is platform independent
Any device capable of running Java will be able to
interpret bytecode into platform specifics

Development Tools
The Java compiler (javac)
The Java launcher (java)
The Java documentation tool (javadoc)

7

The Java Platform
Java

Source

System Control Program

Hardware

Java Virtual Machine
& JIT

Java
compiler

JFC
Application APIs

Collection of
Standard Java

APIs

Class Libraries

z/OS
OS/390
AIX
AS/400
Linux
WinTel
....

DebuggerLine
Editor

SDK

8

Benefits of Java

Get started quickly

Write less code

Write better code

Write programs faster

Avoid platform dependencies

Write once, run anywhere

Distribute software more easily

Network enabled

9

The Java APIs and Integration Libraries

Application Programming Interfaces (APIs)
Provides the core functionality of the Java programming
language
A set of class libraries

• From basic objects, to networking and security, XML generation and
database access

• Programmers uses when writing Java source code

Included in Java platform

Prewritten code
Organized into packages of similar topics

Integration Libraries
IDL, JDBC, JNDI, RMI and RMI-IIOP
Enable database access and manipulation of remote objects

10

The Core API – The Essentials

Objects

Threads

Input and output

System properties

Strings

Numbers

Data structures

Date and time

11

More API Packages

Applets

Internationalization

Security

Graphical User Interface

Serialization

Java Database Connectivity (JDBC)

12

Java Code Structure

Source file
Java source code
.java file extension
Holds class definition

Class
A construct defines data
and methods
One or more methods

Methods
One or more sequence of
statements

Statements
Typically operate on data

Source

Class

Method 1

Method 2

Statements

Statements

13

Anatomy of a class

public class MyFirstApp {

public static void main (String[] args) {

System.out.println(“I rule!”);
}

}

The fundamental building block in Java
programming language is the class

Java Class
The name
of the class

The “{“ marks the
beginning of the class

The “}” marks the
end of the class

14

Java Class

a class in and of itself is not an object… Its
like a blueprint that define how object will
look and behave when the object is created
or instantiated from the specification declared
by the class… just as you can construct many
houses all the same from the same
blueprint/architecture drawing.

15

Anatomy of a main Method

public static void main (String[] args) {

System.out.print(“I rule!”);

}
The method does one

thing that is to print
“I rule!”

The entry point to every application is its main
method

The method
returns no value

The name
of the

method

The
arguments
for the main

method

16

Basic Java Syntax

Comments

Variables and Data
Types

Primitive Data Types

Reference Data Types

Operators

Expressions

Arrays

Strings

17

Comments

/* text */
Java supports the familiar C-style comments /* text */
The Java compiler ignores everything from /* to */

/** documentation */
A documentation or “doc” comment, used by the
javadoc tool

// text
The compiler ignores everything to the end of the line

18

Variables and Data Types

Variable declaration
Name

• Can begin with letter, dollar sign, or underscore
• Followed by letters, underscores, dollar signs, or digits
• Convention is Upper case

Type
• Java’s compiler cares about type
• Determines value and operations

Two kinds of variables
Primitive
Object Reference

19

Primitive Types

Hold fundamental values (simple bit patterns)
Numeric data types

• Integers
o 8-bit byte
o 16-bit short
o 32-bit int
o 64-bit long

• Floating point numbers
o Real numeric types are 32-bit float and 64-bit double

Booleans
• “TRUE”, “FALSE”, “YES”, “NO” or similar constructs

Characters
• Char myChar = ‘A’;

20

Primitive Types

Type Bit Depth Value Range

boolean varies true or false

char 16 bits 0 to 65535

byte 8 bits -128 to 127

short 16 bits -32768 to 32768

int 32 bits -2147483648 to 2147483647

long 64 bits -huge to huge

float 32 bits varies

double 64 bites varies

21

Reference Types

Anything that is not primitive
Objects such as

• Strings
• Arrays
• Classes
• Interfaces

22

Operators - Arithmetic

Operator Use Description

+ op1 + op2 Adds op1 and op2

- op1 - op2 Subtracts op2 from op1

* op1 * op2 Multiplies op1 by op2

/ op1 / op2 Divides op1 by op2

% op1 % op2 Computes remainder of
dividing op1 by op2

23

Operators – Increment / Decrement

Operator Use Description
++ op++ Increments op by 1;

evaluates to the value of op before
it was incremented

++ ++op Increments op by 1;
evaluates to the value of op after
it was incremented

-- op-- Decrements op by 1;
evaluates to the value of op before
it was decremented

-- --op Decrements op by 1;
evaluates to the value of op after
it was decremented

24

Operators – Relational

Operator Use Returns true if

> op1 > op2 op1 is greater than op2

>= op1 >= op2 op1 is greater than or
equal to op2

< op1 < op2 op1 is less than op2

<= op1 <= op2 op1 is less than or equal to op2

== op1 == op2 op1 and op2 are equal

!= op1 != op2 op1 and op2 are not equal

25

Operators – Conditional

Operator Use Returns true if

&& op1 && op2 op1 and op2 are both true,
conditionally evaluates op2

|| op1 || op2 either op1 or op2 is true,
conditionally evaluates op2

! ! Op op is false

& op1 & op2 op1 and op2 are both true, always
evaluates op1 and op2

| op1 | op2 either op1 or op2 is true, always
evaluates op1 and op2

^ op1 ^ op2 if op1 & op2 are different –
that if one or the other of the
operands is true but not both

26

Operators - Assignment
Operator Use Equivalent to

= op1 = op2 Assign op1 to the value in op2

+= op1 += op2 op1 = op1 + op2

-= op1 -= op2 op1 = op1 - op2

*= op1 *= op2 op1 = op1 * op2

/= op1 /= op2 op1 = op1 / op2

%= op1 %= op2 op1 = op1 % op2

&= op1 &= op2 op1 = op1 & op2

|= op1 |= op2 op1 = op1 | op2

27

Expressions

Series of variables, operations and method
calls that evaluate to a single expression

Use parenthesis to specify precedence

int someNum = 6;
int anotherNum;
anotherNum = someNum –1;
anotherNum = (someNum – 3) * 2;
anotherNum = someNum – 3 * 2;

28

Strings

The String class is included in the
java.lang.Object package

The String class represents character strings

When you declare and use a String, you are
actually using an instance of the String class

Basic use of a String
String s = “Hello World! ”;
String t = “Look at Me.”;
System.out.println(s + t);

Hello World! Look at Me.

29

Arrays
Array class is included in the java.lang.Object package

The Array class contains various methods for manipulating arrays

Access array elements using [] anArray[0] = 10;

Special array property length anArray.length

Declare as type[] varName; int[] myInts;

Must allocate memory before use myInts = new int[10];

General form elementType[] arrayName=new elementType[arraySize];

jihgfedcba

0 1 2 3 4 5 6 7 8 9

First Index 7th element at index 6 is “g”

Array length is 10

30

Array Sample Code

int [] squares = new int[5]; // create an array of integers

squares[0] = 100; // initialize first element
squares[1] = 200; // initialize second element
squares[2] = 300;
squares[3] = 400;
squares[4] = 500;

31

If … then …

Test against boolean expression (not integer as in
C/C++).

Curly braces delimit blocks of code {}

If the condition is true then the statements in
the then block are executed.

if (boolean_expr)
{then_stmnts;
}

if (a > 10) {
System.out.println("a > 10");

}

32

If … then … else

if the condition is false, then the statements
in the else block are executed.

if (expr) {
then_stmnts;

}
else {

else_stmnts;
}

if (a < 10) {
System.out.println("a < 10");

}
else {

System.out.println("a >= 10");
}

33

Nested If ... then … else

if (expr) {
then_stmnts;

}
else if (expr_1) {

else_stmnts;
}
else {

else_stmnts;
}

int testscore; (int testscore=88;)
char grade;

if (testscore >= 90) {
grade = 'A';

} else if (testscore >= 80) {
grade = 'B';

} else if (testscore >= 70) {
grade = 'C';

} else if (testscore >= 60) {
grade = 'D';

} else {
grade = 'F';

}

34

The Switch Statement

Used to make a choice between multiple
alternative execution paths

A switch works with the byte, short, char
or int primitive data types

A switch also works with enumerated types

35

Switch
switch (int_expr) {

case x:
case x stmnts;
break;

case y:
case y stmnts;
break;

case z:
case z stmnts;
break;

default:
default case stmnts;
break;

}

switch (grade) {
case 'A':

System.out.println("Outstanding!");
break;

case 'B':
System.out.println("Well done");
break;

case 'C':
System.out.println("Satisfactory");
break;

default:
System.out.println("Fail");
break;

}

36

Switch with “break”

The “default” case is optional

The “break” statement is optional, if it is omitted,
execution drops through to the next case

A common source of errors!

switch (grade) {
case 'A':
case 'B':
case 'C':

System.out.println("Pass");
break;

default:
System.out.println("Fail");
break;

}

37

About Eclipse Tooling

Free download from http://www.eclipse.org
Click on
The Java for the Beginner Labs use the Eclipse IDE for Java Developers

•

IBM development tooling such as WSAD, WSDD, WSAD/IE and RAD
are extensions to Eclipse

Eclipse is an excellent starting point for learning Java
development on your own

Start with workbench basics and tutorials

Eclipse tool hints and tips
Click Help > “Tips and Tricks” from the menu bar

http://www.eclipse.org/

38

Lab Exercise

Hello World

Marathon

Please follow the Lab instructions, Have fun!
and Feel Free to Ask Questions…

39

Ex. 1 Hello World (sample solution)

/**
* The HelloWorldApp class implements an

application that
* simply displays "Hello World!" to the standard

output.
*/
class HelloWorldApp {
public static void main(String[] args) {

System.out.println("Hello World!"); //Display the
string.

}
}

40

41

Ex. 2 Marathon (sample solution)
class Marathon {

public static void main(String[] args) {
// TO DO:
// Declare two integer variables, miles and yards, and one double variable,
int miles;
int yards;
double ;
// TO DO:

// Set miles to 26, and yards to 385
miles = 26;
yards = 385;
// TO DO:
// Write an expression to calculate from miles and yards.
// Save the result of the expression in the variable .
// One mile is 1.609 and there are 1760.0 yards in a mile
= 1.609 * (miles + (yards / 1760.0));

// Print the answer
System.out.println("A marathon is " + + " .");

} // end of main method
} // end of marathon class

Thank You

