
S8384
Test Driven Development Using JUnit

1. The Project
The aim of this lab is to demonstrate Test Driven Development by developing a simple program to
calculate Fibonacci numbers.

From wikipedia:

In mathematics, the Fibonacci numbers are a sequence of numbers
named after Leonardo of Pisa, known as Fibonacci, whose Liber Abaci
published in 1202 introduced the sequence to Western European
mathematics.

The sequence is defined by the following recurrence relation:

That is, after two starting values, each number is the sum of the two
preceding numbers. The first Fibonacci numbers, also denoted as Fn,
for n = 0, 1, … , are:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,
1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025,
121393, ...

2. Writing the Tests
First we need to create a project and write the tests for the Fibonacci program. After writing some
tests we can develop the program and prove that it works.

Create a Project, File>New>Project
1. Select Java Project
2. Call the project SimpleMaths
3. Select Finish.

Right-Click on the SimpleMaths project, select New>JUnit Test Case

1. Call the test FibonacciTest.
Before clicking Finish, note the warning:
JUnit 3.8.1 is not on the build path of project
‘SimpleMaths’. Click here to add JUnit 3.8.1 to the
build path and open the build path dialog.

Click here to add the JUnit dependency. The Java Build Path should now
look like this:

2. Click OK and Finish.

The framework for the test has been created for you:
import junit.framework.TestCase;

public class FibonacciTest extends TestCase {

protected void setUp() throws Exception {
super.setUp();

}
}

We now need to create a new test for our fibonacci application.

3. Add the following code to the FibonacciTest class, don’t worry about the errors
for now.
public void testFibonacci() {

assertEquals(0, Fibonacci.Fibonacci(0));
assertEquals(1, Fibonacci.Fibonacci(1));

assertEquals(1, Fibonacci.Fibonacci(2));
assertEquals(2, Fibonacci.Fibonacci(3));

assertEquals(4181, Fibonacci.Fibonacci(19));
}

4. Awesome, we now have a test case that asserts several (randomly) selected
Fibonacci values. Add a few more if you like.

JUnit has several assertions methods that can be used to test Objects. These
include:

assertEquals()
assertNotEquals()
assertSame()
assertNotSame()
assertTrue()
assertFalse()
assertNull()
assertNotNull()

To get further details on them, hit the Code-Assist key (ctrl-space) in the
testFibonacci method:

Ok, we now have a test case for Fibonacci numbers. There are errors in the test
however. Looking at these, you will see the message Fibonacci cannot be
resolved.

5. Writing the Fibonacci Application

Using features of Eclipse we can create the necessary files and classes easily using the Quick-Fix
feature.

1. Use Quick-Fix to Create class ‘Fibonacci’ in the default package.

2. There are still errors in the testFibonacci method as the Fibonacci class does not
have a Fibonacci method yet. Use Quick-Fix to create one. Ensure it gets defined
as public static int Fibonacci(int i). Note, you may need to
modify the return type as Eclipse cannot always work this out for you.
Fibonacci.java should now look like:
public class Fibonacci {

public static int Fibonacci(int i) {
// TODO Auto-generated method stub
return null;

}
}

3. All errors in the FibonacciTest class should now be resolved. The next step is to
run the test and demonstrate that it fails at this stage.

4. Running the Test
To run the test do the following:

1. Right-Click FibonacciTest.java in the Package Explorer and select Run
As>JUnit Test.

2. A JUnit tab should appear in the left set of panels and show Runs: 1/1 Errors: 0
Failures: 1.

The Failure Trace panel shows where the failure occurred. Try double-clicking on
the failure to jump to the test that failed.

The failure occurred as we haven’t written any code yet. Let us add the Fibonacci
code to the Fibonacci method (in the Fibonacci class). Add the following:
public static int Fibonacci(int n) {

if (n == 0 || n == 1)
return 0;

else
return Fibonacci(n-1) + Fibonacci(n-2);

}

Try running the test again. What happens now?

Can you fix the code so the tests work? (hint: what should the base case return
value be).

When the test passes successfully you should see a green bar in the JUnit view
and Errors: 0, Failures: 0.

5. Further Work

The test we have written should work for all positive integers. What happens if we pass in a
negative integer?

Write a new test for the Fibonacci method which works with negative numbers and modify the
Fibonacci method so it passes.

