
Slides by Justin Gordon
Architect
IBM, WebSphere Product
Center
San Francisco, CA

JUnit and Test Driven Development:
Why and How in Enterprise Software
SHARE Orlando, February 2008

2

Premise

“A comprehensive suite of JUnit tests is the single most import artifact
created in a software project because it reduces bugs, facilitates adding
new developers, and enables refactoring and performance tuning with
confidence. Test-driven development (TDD) is the best way to build a suite
of tests.”

Justin Gordon, Brisbane, CA
Trigo (WPC) Worldwide Headquarters, 2004

3

Roadmap

A tale of two development groups

JUnit Tests

Test Driven Development

Tools

TDD Architecture

Exercise TDD Mock Objects

Getting Started

4

A Tale of 2 Development Groups

CONVENTIONAL
Architects High Level Design (HLD) Detailed Technical

Design (DTD) Coding QA & Bug Fixing Regressions
More QA & Bug Fixing Major Release Bug Fixing
Regressions Bug Fixing Minor Release …

Painful mess! Unhappy developers, unhappy customers, unhappy
managers!

AGILE
Stories and Requirements Simple Specs Write JUnit

(automated) tests in Conjunction with Source Ensure code
coverage Refactoring to make code better QA Limited
bug fixing with JUnit tests for each bug fixed Almost no
regressions! Performance tuning with confidence Release

Very few bugs

Happy developers, happy customers, happy
managers!

5

Roadmap

A tale of two development groups

JUnit Tests
Test Driven Development

Tools

TDD Architecture

Exercise TDD Mock Objects

Getting Started

6

JUnit Tests: What?

• JUnit test: a method, written in Java, that
verifies the behavior of an individual unit of code,
or occasionally of a larger subsystem, and
reports errors in an automated fashion.

public void testAddReturnsSum() {
int sum = Calculator.add(2, 3);
assertEquals(5, sum);

}

7

JUnit Tests: Why?

• If JUnit tests pass and code coverage is high Nearly Bug-Free Code!

• When JUnit tests cover requirements and tests pass Code is Complete!

• JUnit tests facilitate automatic test running to detect regressions instantly
during bug fix cycles. Can’t do that with manual QA! Can’t do that with QA
Automation tools!

• Enables Courage and Creativity

• Developers (experienced and new) can change the code with confidence,
enabling

• Refactoring
• Performance Tuning

• JUnit tests serve to document and demonstrate the API

• Large team sizes, offshoring, complexity

8

Catch 22: Why not write JUnit
tests?

• “Normal” development cycle inhibits JUnit test creation

• Catch-22: existing quality is low, so developers are too busy fixing
problems found in the field to write tests.

• (Bad) Attitude: “It’s QA’s job to find my bugs. I don’t have time to write
tests.”

• Skills: tough to learn how to write JUnit tests for new code. Many new
patterns!

• Even tougher for old code!

• Unless existing code is designed for testability,
implementing JUnit tests is very difficult.

Really Tough!

9

Roadmap

A tale of two development groups

JUnit Tests

Test Driven Development
Tools

TDD Architecture

Exercise TDD Mock Objects

Getting Started

10

What is Test Driven Development
(TDD)?

“Programming practice in which all production code is
written in response to a failing test.”

Read Kent Beck’s:
“Test Driven Development By Example”

List Requirements

Write One Test

Run Test to
Make Sure It Fails

Add or modify just enough code to make new
test pass and all previous tests pass

Refactor to eliminate code
smells (e.g., duplicated code)

http://www.amazon.com/gp/product/0321146530/ref=pd_bxgy_img_a/002-6903292-6906467?%5Fencoding=UTF8

11

What Is Not Test Driven
Development?

• Any time you write code that is not fixing a failing test.

• I.e., Writing code, then writing tests or intending to
eventually write tests.

• Relying on QA to automate their manual tests.

• Be honest when trying this.

• Conventional Big Up Front Design is not TDD!

12

Why TDD Code Coverage &
Better Code

• Guarantees existence of JUnit tests covering most, if not
all of your code!

• Guarantees code will be written to be testable.
• Reverse is also true: if you write your code first, and then your

tests, you may have difficulty writing tests for the new code, and
then you may not write the tests at all! More natural to write
untestable code unless tests written at the same time.

• Solves the motivation problem. Test writing becomes
part of the coding process, not a tedious afterthought.

• Produces better code: more decoupled, with clearer,
tighter contracts.

13

Shooting hoops? Practice Makes
Perfect

• Developers improve skills because of the
immediate feedback from the tests, rather than
months later from QA!

• Academic study confirms higher quality code: “An Initial Investigation of
Test Driven Development in Industry” by Boby George and Laurie
Williams, 2003,
http://collaboration.csc.ncsu.edu/laurie/Papers/TDDpaperv8.pdf

• TDD developers took more time (16%), but non-TDD developers did not
write adequate automated test cases even though instructed to do so!

Write Test Write Code

14

Roadmap

A tale of two development groups

JUnit Tests

Test Driven Development

Tools
TDD Architecture

Exercise TDD Mock Objects

Getting Started

15

Making it Happen: Tools for
Success

• IDEs: Eclipse and IntelliJ offer these
essentials:

• Ease of use to run a single new test
• Refactoring tools.

• Code Coverage
• Clover or Emma are the most popular.
• How do you know how good your tests

are?
• Measure progress for morale (and

management reports).

• Cruise Control
• Automated system for building code,

running JUnit tests and reporting on code
coverage.

• Alerts team of issues (build or JUnit)
within minutes of checkins

16

Sample Clover Coverage HTML
Report

The pink line in the lower right indicates that line 1121 was executed 1083 times and it always evaluated to FALSE, demonstrated
by the zero in line 1123. The challenge is to write a unit test that hits line 1123. That is the game!

17

Roadmap

A tale of two development groups

JUnit Tests

Test Driven Development

Tools

TDD Architecture
Exercise TDD Mock Objects

Getting Started

18

Architectural benefits of TDD

• With TDD

• Better abstractions and better
decoupling of classes.

• Loose coupling, otherwise
impossible to test individual
components.

Loose Coupling: TDD!

A

B DCe

ccbb dd

B

A D

E
C

Tight Coupling!

interface

class

Without TDD, you often
see tight coupling between
classes, making the
implementation of new tests
prohibitively painful.

19

Making it Happen: Isolating Code
for Testing

• Successful TDD depends on dependency isolation – you need to separate the
code to be tested from the rest of the system.

• This is THE main technical challenge, esp. for database and integration points
• Must decouple classes with interface/implementation/mock object pattern
• Use a combination of dependency location and/or injection for dependencies (following

slides)
• Typically mocking out some more complicated resource, such as an object that typically

references the DB with a replacement mock object
• You almost cannot do TDD without using mock objects.
• Tip: minimize business logic in mock objects because you have to duplicate that logic in

the real implementation. Refactor code to minimize business logic in mock classes.

Class To Test Dependency
(Runtime Object)

Dependency
(Mock Object)

Interface

20

Roadmap

A tale of two development groups

JUnit Tests

Test Driven Development

Tools

TDD Architecture

Exercise TDD Mock Objects
Getting Started

21

Exercise: Fibonacci Numbers

Objective:

Write an application to calculate Fibonacci
numbers using JUnit and Test Driven
Development methodology

22

Roadmap

A tale of two development groups

JUnit Tests

Test Driven Development

Tools

TDD Architecture

Exercise TDD Mock Objects

Database Techniques: DOF

Getting Started

23

Making it Happen: Dealing with
Legacy Code

• If only we could write everything
from scratch again!

• Expect islands of old, untested,
and untestable code

• UI code tends to be particularly
problematic

• Most legacy code will be essentially
untestable• Try piecewise remodeling

• Discard old modules one-by-one, replacing with TDD code

• Try “encrapsulation”
• Wall off legacy junk behind a façade interface (if possible; sometimes not)
• Mock out legacy code when testing new modules

CRAP
Clean
Interface

24

Making it Happen: Getting the Team
Started

•Allow extra time
• for learning: there are many new skills and patterns to pick up.
• for re-architecture: existing architecture probably doesn’t support

testing
•Expect discomfort at first – developers not used to working this way.

• Start with a few respected “early adopters” and a trial run

•Get Beck’s “Test Driven Development”, start up your
IDE and do TDD! Or try to recreate my accounting
example.
•Solidify commitment at every level of the organization

• TDD slower for first 6 months; net speedup afterwards.
• Don’t expect to hold the same schedule and “just add

testing”!
• Systematically discover and eliminate obstacles.
• TDD takes discipline. Align incentives, communication,

work environment – everything
•Start with a new project

• TDD can be done against existing code, but MUCH
harder

• Focus on lower levels of the system first

25

Conclusion

• How would you choose between a project with awesome JUnit tests and a project
without JUnit, but lots of great architectural documents and other documentation?
I’d take the JUnit one hands down.

• Documentation gets out of date quickly. Code without tests may be quite buggy,
and even if it’s not buggy, would I trust myself to join a project and not introduce
bugs without JUnit?

• Having a comprehensive suite of JUnit tests is the most import piece of
intellectual property in a software project.

• Why? First you have very few bugs. Second, developers, new and old, can change
the code with confidence because they know immediately if they break something.
This enables the two most important activities in a software project.

• Refactoring
• Performance Tuning

• And TDD is the best way to get that suite of tests!

26

Resources

• Use IntelliJ or Eclipse and try
doing TDD on a simple example

• Books by Kent Beck – “Test
Driven Development”, “Extreme
Programming Explained”

• Books by Martin Fowler,
especially “Refactoring: Improving
the Design of Existing Code”

• Just Do It! You cannot just read
books on it! Just Do It!

27

Appendices

28

Patterns: Naming Test Methods

• test{MethodName}Returns{Value}When{Condition}
• testGetAmountReturnsZeroWhenNoInvoicesAdded
• testGetAmountReturnsInvoiceAmountWhenSingleInvoiceAdd

ed
• testGetAmountReturnsSumofMultipleInvoicesWhenMultipleInv

oicesAdded

• test{MethodName} {DoesSomething}When{Condition}
• testAddInvoiceThrowsWhenInvoiceLimitExceeded

• Why such long method names?
1. Method names print out in test failures
2. Programmers never call these methods

29

What about Refactoring?
• Refactoring is the process of changing the code to make it of higher quality, for

example by better naming, eliminating duplication, easier to read, etc.

• Idea is to get the unit tests working, even if the code is ugly, then keep improving
code while keeping the unit tests passing.

• One implication is that it is more important to have a library of unit tests rather
than the most beautiful “architectural” code and greatest documentation! If the
tests are good, we can manipulate (refactor) the code without fear.

• Read Martin Fowlers “Refactoring: Improving the Design of Existing Code”

http://www.agiledata.org/essays/tdd.html

http://www.amazon.com/gp/product/0201485672/ref=pd_bxgy_img_a/002-6903292-6906467?%5Fencoding=UTF8

30

Better Developers: A Star is Made

“And it would probably pay to rethink a great deal of medical training. Ericsson has
noted that most doctors actually perform worse the longer they are out of medical
school. Surgeons, however, are an exception. That's because they are constantly
exposed to two key elements of deliberate practice: immediate feedback and
specific goal-setting.

The same is not true for, say, a mammographer. When a doctor reads a
mammogram, she doesn't know for certain if there is breast cancer or not. She will
be able to know only weeks later, from a biopsy, or years later, when no cancer
develops. Without meaningful feedback, a doctor's ability actually deteriorates over
time.”

STEPHEN J. DUBNER and STEVEN D. LEVITT, “A Star Is Made”, New York
Times, May 7, 2006:
http://www.nytimes.com/2006/05/07/magazine/07wwln_freak.html?pagewanted=2&ei=5
070&en=7265a75e2cf70a87&ex=1147838400&emc=eta1

Implications: JUnit and especially TDD will groom better developers because they
see the results of their code continually, rather than waiting for months.

http://www.nytimes.com/2006/05/07/magazine/07wwln_freak.html?pagewanted=2&ei=5070&en=7265a75e2cf70a87&ex=1147838400&emc=eta1

31

Guidelines for Test First Design

• If time allows, I can cover these points, but this is really a one day seminar in
doing Test Driven Development. Or maybe this would be fun to discuss at
another brown-bag.

• Copied from http://xprogramming.com/xpmag/testFirstGuidelines.htm which is
a summary of Beck’s and Fowler’s work.

1. The name of the test should describe the requirement of the code

2. There should be at least one test for each requirement of the code. Each
possible path through of the code is a different requirement

3. Only write the simplest possible code to get the test to pass, if you know this
code to be incomplete, write another test that demonstrates what else the code
needs to do

4. A test should be similar to sample code, in that it should be clear to someone
unfamiliar with the code as to how the code is intended to be used

http://xprogramming.com/xpmag/testFirstGuidelines.htm

32

Guidelines for Test First Design

5. If a test seems too large, see if you can break it down
into smaller tests

6. If you seem to be writing a lot of code for one little test,
see if there are other related tests you could write first,
that would not require as much code

7. Test the goal of the code, not the implementation

8. One test/code/simplify cycle at a time. Do not write a
bunch of tests, and try to get them working all at once

33

Guidelines for Test First Design

9. Keep writing tests that could show if your code is broken,
until you run out of things that could possibly break

10.When choosing an implementation, be sure to choose
the simplest implementation that could possibly work

11.If you are unsure about a piece of code, add a test you
think might break it

12.A test is one specific case, for which there is a known
answer

34

Guidelines for Test First Design

9. The name of the test should describe the requirement of
the code

10.There should be at least one test for each requirement of
the code. Each possible path through of the code is a
different requirement

11.Only write the simplest possible code to get the test to
pass, if you know this code to be incomplete, write
another test that demonstrates what else the code needs
to do

12.A test should be similar to sample code, in that it should
be clear to someone unfamiliar with the code as to how
the code is intended to be used

35

Guidelines for Test First
Design

13.If all of the tests succeed, but the program doesn't work,
add a test

14.Tests should be as small as possible, before testing a
requirement that depends on multiple things working,
write a test for each thing it depends

15.Tests should not take longer than a day to get working,
typical test/code/simplify cycles take around 10 minutes

16.Don't test every single combination of inputs. Do test
enough combinations of inputs to give you confidence
that the any code that passes the test suite will work with
every single combination of inputs

36

Guidelines for Test First Design

17.Do not write a single line of code that doesn't help a
failing test succeed. (Clarification for GUI's, some
aspects of GUI's are impossible to test automatically, so
it will have to be an acceptance test that drives you two
write some GUI code. Use automated testing whenever
possible)

18.Do not fix a bug until you have written a test that
demonstrates the bug

37

What is the simplest code?

1. All of the tests run

2. There is no duplicate code (any given code segment or
structural pattern should appear "once and only once")

3. Clarity. The code and tests communicate the intent as
clearly as possible

4. The code is minimal (no classes or methods
unnecessary to get the tests to pass)

38

The Test-Code-Simplify cycle

1. Write a single test

2. Compile it. It shouldn't compile, because you haven't written
the implementation code it calls

3. Implement just enough code to get the test to compile

4. Run the test and see it fail

5. Implement just enough code to get the test to pass

6. Run the test and see it pass

7. Refactor for clarity and "once and only once"

8. Repeat

