Remote z/OS Debugging
8355 The Debug Perspective

Exercise 1

1. Creating the Project, package and java classes (from Lab 1)

Create a Project, File>New>Project,
1. Select Project type ‘Java Project’. Select Next.
2. Project name is ‘Lab’. Select Finish.

Create a Package, File>New>Package,
1. Enter ‘Lab’ in “‘Source Folder’ text window.
2. Enter “eclipseLab’ in “name’ text window. Select Finish.

Create a Class, File>New>Class,
1. Enter ‘Lab’ in ‘Source Folder’ text window.
2. Enter “eclipseLab’ in “‘Package’ window.
3. Enter ‘CountPrinter’ in ‘name’ window.
4. Unselect all of the “tick boxes’ in the bottom 3 boxes.
5. Select Finish

Enter the following code in the generated ‘CountPrinter’ class template:

package eclipselLab;

public class CountPrinter {
public CountPrinter(int num)

{
}

System.out._printIn(*“Count = “ + num);

Create another Class, File>New>Class,
1. Enter ‘Lab’ in ‘Source Folder’ text window.
2. Enter “eclipseLab’ in “‘Package’ window.
3. Enter ‘Runlt’ in ‘name’ window.
4. Tick the “public static void main(String[] args)’ ‘tick box’
5. Select in Finish

Enter the following code in the generated ‘Runlit’ class template. Note this time we’ll count i to
1000:

package eclipselLab;
public class Runlt {

public static void main(String[] args) {
int i=0;

System.out.printIn('Labl™);
while (i++ < 1000) {

CountPrinter cp = new CountPrinter(i);
}

}

2. Debugging functionality

3. In the Java perspective open the Runlt class in the java window.
2. Enter Run>Debug ... and the following window is displayed :

St
Create, manage, and run configurations 5
Debug 3 Java application
S = 2, -
paE ol _D_ o Mame: | Runlt
type filker text —- S - - T <
AR I EEIERE ({2 Main - 09= Arguments | i JRE| ., Classpath| . Source | T Environment | =1 Common |
& Edlipse Application Aroiect:
4 Equinox OSGi Framework
5| Java Applet | Lab |
=[] Java Application
3] Runit Main dass:
Jullint edipselah.Runlt '
Ju Jnit Plug-in Test
;. Remote Java Application [] tndude libraries when ssarching for & main dass
el swT Application [include inherited maine when searching for a main dass
Stop inmain
[_ Apply] [Revert J
I'\"{J [Debug] [Clos=]

This is the debug configuration

Check that the Stop in main check box is selected.

5. Select the Argument tab and enter ‘hello’ in the ‘Program Arguments’ panel. See below.

Create, manage, and run configurations .
Debug 3 Java application
e = o . I —
paE ok ol E"'.. Mame: | Funlt
type filker text : = — - : — =
e : (2 Main (4= Arquments EQJR_.E| ‘4, Classpath | B Sourte| P Environment | =] Common |
& Edlpse Application Proagram arguments:
4 Equinox OSGi Framewark Teit
B Java Applet hisle]
=31 Javs Application
31 Runit
Ju JUnit I}
Ju JUnit Plug-n Test -
'::_', Remote Java Application
—
=11 SWT Application i e
Warking directory:
(3 Default:
() Others
[_ Apply] [Revert J
7 [Debug] [Closs]

6. Click the Debug button.
This opens the ‘Debug’ Perspective shown in the current slide in the presentation.

The Runlt application is being executed and is suspended at the entry into method main.
The blue arrow in the margin and the greyed line indicate where the programs is suspended.

package eclipseLab;

public class RunIt {

= public static void main(Stringl[] args) {
. int i=0;
System.cut.println("Labl");

while (i++ < 1000) {
CountPrinter cp = new CountPrinter(i):;

7. Look at the other windows in the debug perspective

In the attributes window’s variables tab the only known “variable’ the program argument
‘hello’ is displayed.
Try ‘opening’ the *args’ variable and see the various components of a String array exposed.

Y5pebug &liava »
Al R Sl

=

B F count=5
B hash=0
foom§ooffeet=0
B & § vale= char[5] {id=24)
o [Of=h
a [l=e
i (2=l
e E S
o a4 [H=0

iheila]

u o

I

8. Click on the run menu option and see the debugging functionality now enabled:
Resume, terminate, step with filters, step into ...

Project [N Sampke Meru Window Hel

| uePesume F2
B Termriate = - D
=.5tep Into = [0)= "helo”
B o= 5
N f & hashCode= 0
h.| i i = offset=0
eve (0B Filksa Step Flrrs shift4F= = & vae= char[B] [
O R Last Launched Ciri+F 11 : Eléz |:
%, Debog Last Lanched Fi1 a [:’3=]
Rim Hisbory ' e |
Run As ' - G
Fum,, [heilo)
D=bog Hestory '

7. Select Step Over. The variable ‘i’ now appears in the variable tab:

S+ & [0}= Thela®
Loom " ocount=5
L@ hash=0
“oom " offset=0
= value=char[5] {id=24)
bo- 4 [0]=h
? []=e
[g=1
[F=1
=0

EEPERE

8. Select Step Over or press F6 until ‘i’ is 10.
See how the program is executing 1 line at a time.

9. Step through the program until the execution is suspended at line
CountPrinter cp = new CountPrinter(i);
Now enter F5 or Step Into and see the program suspend in the CountPrinter() constructor.

In the thread window the java stack can be seen. Runlt.main(String[]) method calls
CountPrinter.<init>(int) method,

&S Debug &3 = L]
i= [T Runlt [Java Application]
=l @‘? ecipselab.Runit at localhost: 1037
=g Thread [main] (Suspendad)
= CountPrinter. <init={nt) line: 4
= Runlt.main{string[]} line: 9
o Thread [Sional Dispatcher] (Running)

po C\toolsYavaljdvmwi3223-20070426sdk jre\binjavaw . exe {10 Feb 2008 11:04:32)

10. Now enter F7 or Step Return to return to the Runlt.main method.

11. Place the cursor over ‘i’ in the variable tab and ‘right click’ and select Change Value to
bring up the following window. ‘i’ can now be changed. Change it to 82 and click on OK.
This enables the debugger to skip loop iterations.

—

= Change Primitive Value

Enter & new values for i;

&2

ok || cancel

12. Step through the program (using F6) until the execution is suspended at line
CountPrinter cp = new CountPrinter(i);

Now depress the Ctrl + Shift + b keys. A breakpoint has been set at this source code line.
Now enter F8 or Resume, program execution now proceeds to the next breakpoint.

Enter F8 a few times and each time see ‘i’ incremented to indicate that a whole loop
Iteration has been executed.

13. Click on the breakpoints tab to see the breakpoint added in section 12.
Yariables .;:,;0 Brealpoints £

A Jpunlt [ine: 9] - main{Stringl]) :
@ TestClaze [line: 11] - main{String[])

14. Try ‘hot code replacement’. Suspend the java application on a breakpoint in CountPrinter
(use F7 to step-in). Modify the code, for example, change Runlt.java with the following 1
line addition:

int i=0;

System.out.printin('Labl™);

while (i++ < 1000) {
CountPrinter cp = new CountPrinter(i);
i++;

}

Hit “‘Ctrl s’ to save Runlt.java. If you have automatic compilation enabled (default)
Runlt.java will be recompiled. If you get an error, see below. Continue editing the
application. You have changed the application code during an execution. Stepping
through notice how i is incremented twice in each loop body as a result of this code
modification.

15. 1 suspect you will see the following screen:

B O-Qr @ @R Be

%5 Debug 31 | = Y = O ||td= variabh
= 3] Runlt [Java Application] |Vanable inft
& @ eclips

= ead [main] {Suspended)
= zobeolete method in=unknown dedaring type
Thread [Signal Dispatcher] (Running)

File={TBM \Javasdijre'binjavaw. exe (4 A

07 18:48:43)

1J| MemGrab,jaya 1} Runltjava = <absolete method in<unknown dedaring type=> 1

Source niot found,

Edit Source Lookup Path...]

Runlt [Java AppicationC: Program Files\BM \Javaso e \bin'javaw.exe (4 Aug 2007 19

CAEmY WErsSions T

198)

You have tried to modify a method while it is on the thread stack and the jvm has deemed that
it is unsafe to continue. | say ‘suspect’ because another Vendor’s jvm might attempt to continue
in this scenario. As you can see, this test was run using IBM’s Java 5 release.

Try hot code replacement with the following modified testcase.

Step through, in debug mode, exercising both the countPrinterRedirect and main methods. Stop
on a break point in the main method and enable the commented out line, “ctrl s’ to save and
recompile the Runlt class, now continue stepping through. 1t works! The method changed

in flight was not in the call stack when the changes were made so the method could be
recompiled and ‘safely’ executed on its next invocation.

package eclipselLab;

public class Runlt {
public static void main(String[] args) {
int i=0;
System.out.printin(*'Labl™);
while (i++ < 100) {

countPrinterRedirect();

}
}
public static void countPrinterRedirect () {
int j =0;
while (j++ < 20) {
CountPrinter cp = new CountPrinter(j);
// enable the following line in flight
// j++;
}
}

16. To end the lab select the terminate debug menu option (Run>Terminate).

Exercise 2

1. Compiling and running the CountPrinter application on z/OS

Log on to the z/OS machine using putty, compile and start the remote application
1. On your Windows desktop, open the “Java Putty” application (double-click)
2. Ensure the Host Name is mvsl1.centers. 1thost.com and click Open

ﬁ PuTTY Configuration @
Categony
= Session Basic options for your PuTTY session
i LDglglng Spacihy the deatingtion you wart fo, connect ta
= Temina :
Keyboard Host Mame (or |P address) Port
Bl mys1 centers ihost.com 122
Featuras Connection type: _
2 Window {YBaw (Teinet () Riogin *35SH) Senal
Appearance i i]
L boad, save-or delete-a-stored-session
Behaviour
Translation Saved Sessions
Selection SHARE ORLANDO
Colours Defauft Seftings {o || F
= Connection SHARE ORLANDO =i
Data cerbens | E
Proney chimera
aryzar
Telnet i i
Rlogin [javal3)|
i+ 55H e '
e Close window on exit:
ChAways (O Never (%) Onlyon olean ed
About [Cpen | | Cancel |

3. The instructor will allocate you a username and password to login with

Review the remote Runlt application in the eclipseLab directory
4. Move to the eclipselab directory:
cd eclipselab[ENTER]

5. Type the following from your home directory to view Runlt.java:
cat eclipseLab/Runlt.java[ENTER]

6. Type the following from your home directory to view CountPrinter.java
cat eclipseLab/CountPrinter.java[ENTER]

Compile and start the remote application

In the eclipselab directory is a file called runMeRemote. This file contains a script
to setup the Java environment, compile the Runlt and CountPrinter Java files with
the debug extensions on, and finally to start the application suspended waiting on
debug instructions from a port.

7. Type the following from the eclipselab directory to view the runMeRemote
script
cat runMeRemote[ENTER]

8. Run the runMeRemote script
runMeRemote

9. This will output the following line. Note the address as we’ll need that in
Eclipse:
Listening for transport dt_socket at address: 80nn

The Runlt application is now waiting on input from our debugger. To debug we
need to return to our Eclipse environment.

2. Remote Debuqgging in Eclipse

The version of the Runlt application on mvsl is the same as the original version
created in the last lab. To avoid inconsistencies, you must change the application back
to how it was. You should have the following files:

CountPrinter.java
package eclipselLab;

public class CountPrinter {
public CountPrinter(int num)

{
System.out._printIn(*“Count = “ + num);
}
}
Runlt.java

package eclipselLab;
public class Runlt {

public static void main(String[] args) {
int i=0;
System.out.printin('Labl™);
while (i++ < 1000) {
CountPrinter cp = new CountPrinter(i);
}

Start the debugger

1. Select Run>Debug, and ensure the Port setting is the one you noted down

above:
‘= Debug
Create, manage, and run configurations
Attach to & Java virtual machine accepting debug connections
HEX B Name: | Rurlt (1)
| type fiiter text | ——— .
o _;_ . ' 457 Comnect . % Source | | Comman |
Edlipse Application n
ﬁ
fﬂ’ Equinox O5GI Framework nj_e;t :
| Java Applet | Leb I[Browse...]
[T Java Application
- Ju Junit Conpection Type:
~Ji Junit Plug-n Test [Standard (Socket Attach)]
=k @, Remote Java Application
[EE munrt(n P .
] SWT Application i e ;
Hostt | mysLcenters.inast.com |
Port: | 8001 |
[T atiow termination of remote v
[Apply J [Revert]
@] [Diebug J [Closs
Debug the application

2. Eclipse will change to the debug perspective and allow you to debug as

before. A breakpoint was set at the start of the main method and execution
is suspended here:

W Debug 22 13 b A T (et
E E?, edipsetab [Remote Jave Application]
-ﬁ 1BM 13 VM[mvs 1. centers.ihost.com:8001]
[P Thread [main] (Suspended (breakpoint at line- 8 in Rurlt))
= Runitmainistrinall) fine; &
#® Thread [Signal Dispatcher] {Running)

|J] CountPrinter.java W] Rurttjava £3

package eclipselab;

publiec class RunIt |
public static veoid main(String[] args)
int 1 = 0;
System.out.printlin("Labl");
while (i++ < 1000) {
i | CountPrinter ¢p = new CountPrin

Try using with some of the features we worked with in the previously lab:
- step in, over

- modifying variables in flight

- breakpoints

- hot code replacement

If the remote application completes, restart it by simply rerunning the

runMeRemote application.

Note, any output will now appear on the remote machine. Check out this
in-flight snapshot:

= Debug - Runit.java - Eclipse SDK
File Edit “Source Refactor

M=%

Mavigate Search Project Run
= = % s »
¥ & .,vy -0 Q- = =

35 Debug 2 Lk
o

Window Help

= Variables T7

Breakpoints
eclipselab [Remote Java Application]

= &2 1BM 19 vM[localhost:300 1}
2 ¢ Thread [main] {Suspended} @ |
= Runit.main(String[]) Ine: 8
¥ Thread [Signal Dispatcher] {Running)

MName

W=

[¥] CountPrinter java [\ Runitjava £3
int i=0; |
System.out.println("Labl"); = {2 Runlt
while (i++ < 1000) {
CountPrinter cp =
i++;

= 5 || B= outine: 2

new CountPrinter(i);

s
B console 82 Tasks
|Mio consoles to display at this time.
g SmartInsert | 811

Writable

eclipseLa

D unlt
Listening for

nsport dt_socket at addr

4. To end the lab select the terminate debug menu option
(Run>Terminate).

edpseLab

® * man(stingl)

7 | %5 Debug 2

value
String[0] fid=10)
4

Baxex-=0

