S8384

Test Driven Development Using JUnit

1. The Project
The aim of this lab is to demonstrate Test Driven Development by developing a simple program to
calculate Fibonacci numbers.

From wikipedia:

In mathematics, the Fibonacci numbers are a sequence of numbers
named after Leonardo of Pisa, known as Fibonacci, whose Liber Abaci
published in 1202 introduced the sequence to Western European
mathematics.

The sequence is defined by the following recurrence relation:

0 if n=10;
F(n)=<1 if n=1;
Fin—1)+F(n—-2) ifn>1.

That is, after two starting values, each number is the sum of the two

preceding numbers. The first Fibonacci numbers, also denoted as F,,
forn=0,1, .., are:

0,1,1, 2, 3,5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987,
1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025,
121393, ...

2. Writing the Tests
First we need to create a project and write the tests for the Fibonacci program. After writing some
tests we can develop the program and prove that it works.

Create a Project, File>New>Project

1. Select Java Project
2. Call the project SimpleMaths
3. Select Finish.

Right-Click on the SimpleMaths project, select New>JUnit Test Case

% 122 UnitTesting
® 2 Lab
® |2 58354.ab

= 1,5_—}1-" R
Bl B JRE Sys | New B = Project...
& Tg&-J- TestProject| Go Into
{ B Package
Cpenin Mew Window | @ i
T i F)y
Open Type Hierarchy 4 | Tnterface
H2| Copy ctrl+C | & Enum
B8 Copy Qusiified Nam (@ Annotation
- .-'\{I
(5 Paste Cirl+y £% Source Folder
¥ Delete Delete |7 Folder
| ¥ File
Build Path k=2
| 1= Ut i
Source Alt4shift4s » = L?Fﬁ?d_T?xf_F"E
Refactar Altshift+T PI = JUnitTest Case.
E=y Impart... | B Other...
A~ ' L

1. Call the test FibonacciTest.
Before clicking Finish, note the warning:
Junit 3.8.1 1s not on the build path of project
“‘SimpleMaths”. Click here to add Junit 3.8.1 to the
build path and open the build path dialog.

Click here to add the JUnit dependency. The Java Build Path should now
look like this:

—y

(& R B e R S 11 I P o — - 1
= Properties for SimpleMaths (Filtered) o =] % |
(tpefitertext | [| Java Build Path

‘Java Build Path e — — —
| # source | = Projects | = Libraries |_‘3"4} Order and Export |
J4H= and dlass folders on the build path:
G- B JRE System Library ﬁgumwiﬂz}lﬂwﬁ#}.ﬁ—sdl! [Add JARS, .,]
- 2, JUnit 381
oy | Add External 3aRs... |
| Addvariable,.. |
l Add Librany. .. J
| Add Class Foider... |
[Edit,. |
[Remove]
(£ | i |
@ Lo J[cancd |

2 . Click OK and Finish.

The framework for the test has been created for you:
import junit.framework.TestCase;

public class FibonacciTest extends TestCase {

protected void setUp() throws Exception {
super.setUp(Q;
}

}

We now need to create a new test for our fibonacci application.

3. Add the following code to the FibonacciTest class, don’t worry about the errors

for now.

public void testFibonacci() {
assertEquals(0, Fibonacci.Fibonacci(0));
assertEquals(1l, Fibonacci.Fibonacci(l));

assertEquals(1l, Fibonacci.Fibonacci(2));
assertEquals(2, Fibonacci.Fibonacci(3));

assertEquals(4181, Fibonacci.Fibonacci(19));
}

4. Awesome, we now have a test case that asserts several (randomly) selected
Fibonacci values. Add a few more if you like.

JUnit has several assertions methods that can be used to test Objects. These
include:

asserteEquals(Q)
assertNotEquals()
assertSame()
assertNotSame()
assertTrue()
assertFalse()
assertNull)
assertNotNull

To get further details on them, hit the Code-Assist key (ctrl-space) in the
testFibonacci method:

public void testFibonacci () {

B assertEquals(0, Fibonacci.Fibonacci (0));
a assertEquals(l, Fibonagci.Fibonacci(l));
a assertEquals(l, Fibonacci.Fibonacci (2));
ta assertBgquals(2, Fibonacci.Fibonacei(3)):
] assertEquals (4181, Fibonacci.Fibonacci(18));
} @ asserthlothiull Object object) void - Assert || Aserts that two objects rafertathe same object. Ifthey
} & assertilotiul[String message,; Object object) void - Asser | 278 N0t AN AssertionFalledError is thrown with the given
message,

@ aszertiotSame{Dbject expected, Object actual) void - A=

& asserthiotSame (String message, Object expected, Object

& asserthiull{Object ohject) void - Assert -

¢ asserthiull{String message, Cbject object} void - Assert

& assertSame{Obiect expected, Object actual) vold - Asser

vf assertsame{String messags, Object expected, Dbject act|,, |
(%1 I | (@)

Press “Crrl+ Space’ to show Templsts Proposzis

Ok, we now have a test case for Fibonacci numbers. There are errors in the test
however. Looking at these, you will see the message Fibonacci cannot be

resolved.

5. Writing the Fibonacci Application

Using features of Eclipse we can create the necessary files and classes easily using the Quick-Fix

feature.

1. Use Quick-Fix to Create class ‘Fibonacci’ in the default package.

3.

public veid testFibonaceci() {

5 [Fonzed cannotbe resabvedt Bua 15 (0, FiBonaced . Fibonacei (0))
4

agsertgquﬂ 1s(1, (3 Create dase ‘Fibonacd' (Opens the new dass wizard o create the type.
4 as SE‘ItEq’Ud Is(1l , B freath Iconftam. Ebon‘:d Package: {default package)
& Create local vaniable ‘Fibonaco! public dass Fibonacci {
sertE i
B et tEq—Uﬂ 1s(2 ! @ Change to ‘FibonacoiTest i
a Create field Fbonacd'
o BSSE‘ItEqUﬂ I1s5(418 © Create parameter ‘Fibonacd'

@ Rename in file (Ctrl+2, R direct access)

There are still errors in the testFibonacci method as the Fibonacci class does not
have a Fibonacci method yet. Use Quick-Fix to create one. Ensure it gets defined
aspublic static int Fibonacci(int 1). Note, you may need to
modify the return type as Eclipse cannot always work this out for you.

Fibonacci.java should now look like:
public class Fibonacci {
public static int Fibonacci(int i) {
// Auto-generated method stub
return null;

}

All errors in the FibonacciTest class should now be resolved. The next step is to
run the test and demonstrate that it fails at this stage.

4. Running the Test
To run the test do the following:

1.

Right-Click FibonacciTest.java in the Package Explorer and select Run
As>JUnit Test.

B 4 SimpleMaths
= [(default package)
=] Fibonacd java

| 20 .
i A JRE Syste MNew 3
i Cpen With' *
Open Type Hierarchy F4
=) Copy Cirl+
5= Capy Qualified Name
[Paste Cirl+v
¥ Delete Delete
Build Path K
Saource Alt+shift+s
Refactar alt+shift+T *
L3 Export...
References k
Dedarations L

2. A JUnit tab should appear in the left set of panels and show Runs: 1/1 Errors: 0
Failures: 1.

The Failure Trace panel shows where the failure occurred. Try double-clicking on
the failure to jump to the test that failed.

'Package Es|.1:|lr:|r|=:r.HiE|'-=|rd'|5-I | g Junit 22 ==dmil || [y Fibmacufl'e:s_t,j'aw_l Y

(Finished after 0,047 seconds 7| import junit.framework.TestC
O " BB B = H-

Runs: 1f1 B Errors: 0 B Falures: 1 . i .
N (| DvRiie elass FIbopacciissk. e
'_5-3-E:cjﬁ:__onacu'l'_eét'ER_unnEf:-J"LIHi:c_é-} [protected void setUp() t

ol S super.setUp () ;

}

public void testFibonace

' assertEquals(0, Fibo

| assertEquals(l, Fibo
assertEquals(l, Fibo
assertEquals (2, Fibo

gssertEquals (4181, F

—|]_'
)

I = Failure Trace
J

¢ junit, framework. AssertionFailedError: expected: <0> but was: <nul
= at FibonacoTest, testribonacc{FibonacdaTest.java: 11}

The failure occurred as we haven’t written any code yet. Let us add the Fibonacci

code to the Fibonacci method (in the Fibonacci class). Add the following:
public static int Fibonacci(int n) {
if(h=01]] n=1)
return O;
else
return Fibonacci(n-1) + Fibonacci(h-2);

}

Try running the test again. What happens now?

Can you fix the code so the tests work? (hint: what should the base case return
value be).

When the test passes successfully you should see a green bar in the JUnit view
and Errors: 0, Failures: 0.

5. Further Work

The test we have written should work for all positive integers. What happens if we pass in a
negative integer?

Write a new test for the Fibonacci method which works with negative numbers and modify the
Fibonacci method so it passes.

