
S8351: OO in Java is LIKE COBOL Page - 1 -

COBOL: COBOL Concept Description
Java: Java/OO Similar Concept
++: What Java/OO adds to Concept

COBOL: Load Module/Program
Java: Class

COBOL: PERFORM
Java: method

++:

can pass parameters to method, more like FUNCTION
other programs/classes can call methods in different classes if
declared public. public/private gives designer much control over
what other classes can see inside a class.

S8351: OO in Java is LIKE COBOL Page - 2 -

COBOL: Working Storage, statically linked sub-
routine

Java: instance variables
++: (see next)

COBOL: Working Storge, dynamically loaded sub-routine
Java: Class variables

++: Java can mix both Class variables (called static, just the reverse of
our COBOL example, and instance variables (the default).

S8351: OO in Java is LIKE COBOL Page - 3 -

COBOL: PICTURE
Java: No real equivalent.
I therefore invented a method to mymic a ZZZ,ZZZ,... mask for integer input. Here is
an example of padLeft that implements this logic. padLeft is also a good example of
polymorphism. In COBOL, if you have different parameter lists you need different
entry points. In Java, the types of parameters are part of the definition. For
example:
 * paddedString = u.padLeft(oldString,10); // pad left with blanks
 * paddedString = u.padLeft(oldInt,10); // comma inserted every 3 bytes.
 * paddedString = u.padLeft(oldInt,10,2); // " + .00 (2 is # decimal points).
 * paddedString = u.padLeft(oldLong,10); // comma inserted every 3 bytes.
 * paddedString = u.padLeft(oldLong,10,2); // " + .00 (2 is # decimal points).
All the padLeft methods do essentially the same function. However, the ones that
accept int or long values, will also insert the comma in every 3 bytes, and suppress
leading zeroes. The number of decimal digits is my way of handling the issue of
decimal rounding. This will work as long as you add or subtract integers with the same
assumed decimal precision, and, if you multiply or divide, you manually handle the
scaling.

S8351: OO in Java is LIKE COBOL Page - 4 -

COBOL: Decimal arithmetic

Java: Not in native Java, but IBM has implemented some BigDecimal
classes.

COBOL: COPY or INCLUDE
Java: Inheritance
++: Much more powerfull!

COBOL: ON EXCEPTION
Java: try/throw/catch
++: can limit scope of error detection (see following)

S8351: OO in Java is LIKE COBOL Page - 5 -

COBOL: OPEN
Java: Input Streams
++: Automatic error detection, both a blessing and a curse.

COBOL: WRITE
Java: write (yes, really).

COBOL: CLOSE
Java: close method

 COBOL: READ
Java: read...

	COBOL:
	Load Module/Program
	Class
	COBOL:
	PERFORM
	COBOL:
	Working Storage, statically linked sub-routine
	COBOL:
	Working Storge, dynamically loaded sub-routine
	Class variables
	PICTURE
	Decimal arithmetic
	COPY or INCLUDE
	Inheritance
	ON EXCEPTION
	COBOL:
	OPEN
	Input Streams
	WRITE
	CLOSE
	COBOL:
	READ

