
Introduction to
Agile/Extreme Programming
Matt Ganis
Senior Technical Staff Member
(Certified Scrum Master)

IBM – Hawthorne, New York
ganis@us.ibm.com

Share 2008 – Orlando    Session: 8381
Current slides at: http://webpage.pace.edu/mganis

mailto:ganis@us.ibm.com


2

Agenda

• Overview of Agile

• What are some of the components/practices

• How is this different from what we do today

• Some hints/tips/suggestions



3

Definition of Agile1

Agile is an iterative and incremental (evolutionary) approach
to software development which is performed in a highly
collaborative manner with "just enough" ceremony that
produces high quality software which meets the changing
needs of its stakeholders.

1 http://www.agilemodeling.com/essays/agileSoftwareDevelopment.htm



4

What is Agile ?

• XP, SCRUM, DSDM, Adaptive Software Development, Crystal, FDD
• February 2001 (Snowbird, UT)
• Agile Alliance

• Started as 17 methodology authors and practitioners

• Agile Manifesto Values:

• Individuals and interactions over processes and tools
• Working software over comprehensive documentation
• Customer collaboration over contract negotiation
• Responding to change over following a plan

http://www.agilemanifesto.org/



5

Iteration 1 Iteration 2
Iteration n

Within an iteration, stories
are created

In a planning game, stories
are selected by the
customer based on value

Releases are composed of
a number of iterations, as
the iterations progress,
stories are completed, and
new ones are introduced

At some point, there exists a
deliverable, that delivers
enough value that the
customer says “stop” since
the remaining stories don’t
contribute sufficient value

The “promise” of Agile

Agile allows for faster deliverables at a lower cost (assuming the customer
decides, based on what they see, that a set of stories aren’t needed)



6

Why is Iterative development
“good”?

Further iterations

Iteration 3Iteration 2Iteration 1

Path when we’ve planned 100%



7

What is Agile

• Agile Software methodologies and practices emphasize:

Empirical process control
Emergence
Self-organization

• Agile methodologies span the spectrum
between“hacking” and “milestone plan-driven”
development

• They are VERY disciplined
• VERY flexible

(like a gun, they can be quite effective and dangerous at the same
time)



8

What is Agile?
(Incremental, Iterative, Adaptive)

• Incremental

• Build a system gradually
• See the system grow
• Demonstrating progress

• Iterative

• Multiple releases or check points during a project, each closer to the target
• Iterations include requirements development and testing
• Typical iterations are two weeks long
• Plan as you go

• Adaptive

• Goals change based on lessons from prior iterations, feedback and
business opportunities



9

Agile Methods

• Agile methods tend to fall into two categories:

Engineering (the “how to do it”)
Project Management (the “how to manage it”)

• Both operate in an iterative manner



10

Why Agile?

Organizations are interested in Agile development

• Forrester Research indicates that 2/3 of their clients are
interested in Agile capabilities to deliver more value to the
business faster

• Clients are asking for it

• It has become even more popular in recent years due to easy-
to-follow publications and internet buzz



11

The demand for Agile development
(cont)

• Many clients are struggling with application delivery issues

• Poor I/T relationship with the business
• Track record of poor project delivery
• Inability to deliver on-time, on-budget
• Inability to delivery solutions that meet the needs of the business
• Poor results with offshore delivery or seek to avoid offshore delivery
• Large project backlog

• Internal and external IBM delivery projects are interested in Agile
techniques to help address delivery excellence challenges

• Requirements often are not well-defined
• Speed time to deliver critical business functionality
• Reduce technical risk for first of a kind solutions



12

Agile Survey2

2 Results of an Industry survey by Scott Ambler: http://www.ddj.com/dept/architect/191800169?pgno=1



13

How has Agile affected your
productivity?
Survey says:

How has Agile affected your productivity?



14

How has Agile affected your quality of deployed
systems?
Survey says:

How has Agile affected your quality of deployed systems?



15

How has Agile affected the stakeholders
satisfaction?
Survey says:

How has Agile affected the stakeholders satisfaction?



16

Scrum (Project Management)



17

Scrum overview

Scrum is an iterative, incremental process for developing
any product or managing any work. It produces a
potentially shippable set of functionality at the end of every
iteration. It's attributes are:

An agile process to manage and control development work.

A team-based approach to iteratively, incrementally develop systems and
products when requirements are rapidly changing

a way to detect and cause the removal of anything that gets in the way of
developing and delivering products.

Scrum is scalable from single projects to entire organizations. Scrum has
controlled and organized development and implementation for multiple
interrelated products and projects with over a thousand developers and
implementers.



18

Scrum (project management)



19

What is Extreme Programming
(engineering)



20

What is XP

• Extreme Programming (or XP) is a set of values,
principles and practices for rapidly developing high-
quality software that provides the highest value for the
customer in the fastest way possible

• It’s an “engineering” method in that it prescribes “HOW”
to create the code unlike SCRUM that talks about “how to
manage an agile project”



21

Some “Infrastructure”
definitions



22

Stories

• User requirements come to the development team in
what we call “Stories”

• These are short descriptions of what the customers would
like to see done – not specified in any technical language
– but represented as a “thought” or as an “idea”



23

What makes a “good” story
(from Bill Wake: http://www.xp123.com/xplor/xp0308/index.shtml)

Testable. Stories need to be testable, otherwise how do you know the story is complete?
T

Small. Having small stories is a result of estimable and negotiable. The larger the story the
harder it is to estimate, the less flexibility in negotiation.S

Estimate. If a story can't be estimated then the customer can't derive value or assign a priority to
it. We don't need a precise estimate or a guarantee that the estimate will never change.

E

Value. Stories need to have real business value to the stakeholders. Typically this is the
customer although there are other stakeholders (including the development organization). They
should be expressed in ways that the primary stakeholder can understand the value provided by
the story.

V

Negotiable - Remember that agile methods are typically variable in scope. That is the time line is
fixed (iteration length) and the quality and scope are varied. A story is a placeholder for a
discussion. We need to be able to split, combine, tweak, clarify, etc stories at any time.

N

Independent. If they are independent we can schedule and build them in any order. This allows
us to select stories with the highest value without worrying about all the expensive, low value
dependent stories.I



24

“How fast can you go ?” - Your
Velocity

• A project velocity is used to determine if the iteration is over booked
or not.

• Total up the time estimates in ideal programming days of the tasks, this must not
exceed the project velocity from the previous iteration.

If the iteration has too
much then the

customer must
choose

user stories to be put
off until a later iteration



25

XP Practices

• Planning Game

• Small Releases

• Simple Design

• Continuous Testing

• Refactoring

• 40-hour work week

• Pair Programming

• Collective code ownership

• Continuous Integration

• On-Site customer

• Coding standards

XP is extreme in the sense that it
takes 12 well-known software
development "best practices" to an
extreme



26

Key Ideas

•Practices are synergistic and support each other

The more holes you “poke in the bucket” the less Agile you become

Two things remain “true”:

•Distance is expensive
•Drives the need for a high degree of communication

•Schedules never slip
•Stories fall out, only to be done later

Agile



27

•Upfront requirements gathering and sign-off
(no need to commit early

•Upfront design documents  (easy to retarget)

•Early costs amortized over life of project

•Intimidation: schedule, cost, or value

What is missing from traditional waterfall
methods ?



28

What’s different ?

Requirements

Analysis

Architecture

Design

Code

Test

Deploy

Time

• Arch
•User Design
•Development
•Customer
•DBA
•Deploy

Start Finish• Arch
•User Design
•Development
•Customer
•DBA
•Deploy

• Arch
•User Design
•Development
•Customer
•DBA
•Deploy

VS.

Waterfall

Iterative



29

What’s different ?
today we use Plan-driven methods

• Waterfall assumes requirements are understood up front
and are relatively stable

• Assumes software can be “manufactured”

• Emphasizes Big-Design Up Front (BDUF)

• Step-by-step execution
• Decouple architecture and design from coding and

testing
• Different teams for

different aspects



30

“A day in the life of an XP team…”

• XP teams work in a series of fixed iteration cycles.

• Iterations typically last 1, 2 or 3 weeks each depending on the team. (A
given team will almost always use same the iteration size for every
iteration.)

• At the beginning of each iteration, the team gets together with
the customer for a planning meeting. In that meeting, they go
over the features the customer wants done in that iteration,
breaking each feature down into individual engineering tasks.

• Individual developers then sign up for specific tasks, and estimate those
tasks. No developer is allowed to sign up for more work in the coming
iteration than he completed in the previous iteration.



31

“A day in the life of an XP team…”
(cont)

• During the rest of the iteration, the team will implement the
features they signed up for, pair programming on all production
code.

• All code is written test-first -- that is, the developers don't write any code
until they have a failing test case. The developers write unit tests to test
individual classes and subsystems. The customer provides functional or
acceptance tests to validate the features that the programmers are
developing.

• At the end of the iteration (usually on a Friday), the
programmers deliver a working system to the customer. The
system may not be complete, but all functionality that is
implemented works completely, without bugs. The customer
accepts delivery, and the team goes home early. The next
Monday everyone meets again to plan the next iteration, and
the cycle repeats itself.



32

XP
flow

Stories

Velocity

Unfinished
Work

New
Function

Bug
Fixes

New Velocity

Refactoring

Retrospective

Iteration
Planning Development

Latest
Version

Release
Plan

Bugs

Customer
Interaction

Iteration
Plan



33

•

Using these techniques, the experience has shown that a
better quality of code is produced

why ?



34

Continuous Testing

Teams using agile methods work in short iterations to “grow” a
system.  These methods require the whole team to focus on quality
throughout each of these iterations, ensuring that the system is built
on a sound foundation.

The system must be kept in a high-quality,
working condition at all times. With
software builds and integration taking
place on an hourly basis in some cases,
there simply is no time to perform
extensive manual tests. To accomplish this, the team must commit to
automating as much of the testing process as possible.

(Collective code ownership, Coding standards , Integration)



35

What is pair programming3?

Two programmers working side-by-side, collaborating on the same
design, algorithm, code or test. One programmer, the driver, has
control of the keyboard & mouse and actively implements the
program. The other programmer, the observer, continuously
observes the work of the driver to identify tactical
(syntactic, spelling, etc.) defects and
also thinks strategically about the
direction of the work.

3 Laurie Williams

(Collective code ownership, Small Releases, Simple Design, Small Release)



36

On-site customer

On-Site Customer describes the need to have on-site access to people,
typically users or their representatives, who have the authority
and ability to provide
information pertaining
to the system being built
and to make pertinent
and timely decisions
regarding the requirements,
and prioritization

(Continuous Integration, Small Releases, Pair Programming)



37

In Summary

XP the practice of all of these ideas continuously:

• "If code reviews are good, we'll review code all the time
(pair programming)

• If testing is good, everybody will test all the time (unit testing), even the
customers

• If design is good, we'll make it part of everybody's daily business
(refactoring)

• If simplicity is good, we'll always leave the system with the simplest design
that supports its current functionality
(the simplest thing that could possibly work)

• If architecture is important, everybody will work defining and refining the
architecture all the time

• If integration testing is important, then we'll integrate and test several times
a day (continuous integration)

• If short iterations are good, we'll make the iterations really, really short ...
(the Planning Game)."



38

Thank you !

If you have any questions, please feel
free to contact me at:

ganis@us.ibm.com

(914) 784-5759

Or find these slides online at:

http://webpage.pace.edu/mganis

mailto:ganis@us.ibm.com

