
Oliver Fenton

Java Technology Center, IBM Hursley Labs,
Winchester, UK

Session: 8354

Java for the Beginner: Part III of III

SHARE Orlando, February 2008

2

IBM, AIX, CICS, DB2, IMS, z/OS, OS/390, S/390,
System/390, VisualAge, WebSphere Application Server,
WebSphere Studio, z/VM - are trademarks or registered

trademarks of the IBM Corporation

Sun, Sun Microsystems, JavaSoft, Java, JavaBeans, JDK,
Java 2 Micro Edition, J2ME, Java 2 Standard Edition, J2SE,

Java 2 Enterprise Edition, J2EE - are trademarks or
registered trademarks of Sun Microsystems Inc.

Trademarks

3

Agenda

Part II recap
Looping constructs

for
while
do .. while

Exception handling
Exercise 1 and Exercise 2
Collections classes

Problems with arrays
Collection classes and the ArrayList

Exercise 3
Java 5 and Generics

4

• Which of the following identifiers are
valid?

• A) BigOILongStringWithMeaninglessName
• B) $int
• C) bytes
• D) $1
• E) finalist

Recap

5

• What is the range of values that can be
assigned to a variable of type short?

• A) 0 through 216-1
• B) 0 through 232-1
• C) -215 through 215-1
• D) -231 through 231-1
• E) It depends on the underlying hardware

Recap

6

• What are the values of x, a and b after
executing the following code?

int x, a=6, b=7;
x = a++ + b++;

• A) x = 15, a = 7, b = 8
• B) x = 15, a = 6, b = 7
• C) x = 13, a = 7, b = 8
• D) x = 13, a = 6, b = 7

Recap

7

Agenda

Part I recap
Looping constructs

for
while
do .. while

Exception handling
Exercise 1 and Exercise 2
Collections classes

Benefits
ArrayList

Exercise 3
Java 5 and Generics

8

For loops

for (initialisation ; continuation_expr ; increment) {
loop_stmnts;

}

• initialization executed once at beginning

• increment executed each time round the loop, immediately
after the body of the loop

• continuation_expr is evaluated at the top of the loop on
every iteration. The loop terminates when
continuation_expr is false.

9

For loops construct

Initialization

Continuation
Expression

Loop Statements

Increment

true

false

10

For loops example

• common short hand:

for (int i=0 ; i < 10 ; i++) {
System.out.println("i = " + i);

}

int i;

for (i=0 ; i < 10 ; i++) {
System.out.println("i = "

+ i);
}

i = 0
i = 1
i = 2
...
i = 9

11

While Loops

while (boolean_expr) {
stmnts;

}

• boolean_expr evaluated at top of each loop
• Body executed if expr evaluates to true
• Make sure your loop terminates!

int i = 0;

while (i < 10) {
System.out.println

("i = " + i);
i++;

}

i = 0
i = 1
i = 2
...
i = 9

12

While Loops construct

Boolean
Expressio

n

Loop
Statements

true

false
while

(i < 10)

system.out.printl
n

i++;

true

false

13

do .. while Loops

do {
stmnts;

} while (boolean_expr);

• body executed each time through the loop

• boolean_expr is evaluated at the end of the loop

• body of the loop is always executed at least once

int i = 0;

do {
System.out.println

("i = " + i);
i++;

} while (i < 10);

i = 0
i = 1
i = 2
...
i = 9

14

Do Loops

Boolean
Expression

Loop Statements

true

false

while
(i < 10)

system.out.println
i++;

true

false

15

Continue statement

• Used to stop / break the current iteration of a
loop

for (int i = 0; i < array.length; i++) {
if (!array[i].needsProcessing()) {

continue;
}
// process element...

}

16

Continue with Label

• Use labels for nested loops

• Can label opening statement of do, while and for
loops

mainLoop: for (int i = 0; i < array.length; i++) {
for (int j =0; j < array[i].length; j++) {

if (!array[i][j].needsProcessing()) {
continue mainLoop;

}
// process element...

}
}

17

Break
• Like continue, but abandons entire loop instead of current

iteration

• Can also use labels on break statements

• The break statement has two forms
• Labeled and unlabeled
• You can also use an unlabeled break to terminate a for, while, or

do-while loop

for (int i = 0; i < array.length; i++) {
if (array[i] == 0) {

break; // stop processing at first zero entry

}
// process element...

}

first:
for (int i = 0; i < array.length; i++) {

if (array[i] == 0) {
break first;
}

// process element...
}

18

The return statement

• The last of the branching statements is the return
statement

• It exits from the current method
• The control flow returns to where the method was invoked

• The return statement has two forms:
• One that returns a value -- return ++count;
• One that doesn't -- return;

• To return a value, simply put the value (or an
expression that calculates the value) after the return
keyword as indicated above

19

Agenda

Part I recap
Looping constructs

for
while
do .. while

Exception handling
Exercise 1 and Exercise 2
Collections classes

Problems with arrays
Collection classes and the ArrayList

Exercise 3
Java 5 and Generics

20

Exceptions and Error Handling

• “An exception is an event that occurs during the
execution of a program that disrupts the normal
flow of the instructions”.

• When an error occurs within a block of code:
• An exception is passed to the runtime system
• The runtime system searches backwards through

the call stack to find an exception handler
• If a handler is found, control passes to the handler,

else the program exits

21

Catching Exceptions

• Surround code which may cause an error in a try block, and
place one or more catch blocks after it.

FileReader fileReader;
try {

fileReader = new FileReader("input.txt");
// read from file etc...
...
fileReader.close(); // done!

}
catch (FileNotFoundException notFoundEx) {

// handle file not found
}
catch (IOException ioEx) {

// handle error closing file
}

22

And Finally

• A finally block may follow a try and its
associated catch blocks

• The code in a finally block will always be
executed

try {
...

}
catch (...) { }
catch (...) { }
finally {

// tidy up code...
}

23

Exercise 1

• Print out the Command Line Arguments
to a Java program

24

A Solution for Exercise 1

/**
* A Java application to list the command line arguments
*/
class CommandLine {

public static void main(String [] args) {
for (int i = 0; i < args.length; i++) {

System.out.println("Argument " + i + " = " + args[i]);
}

} // end of main method
} // end of class

25

Exercise 2

• Improve the “FilePrinter” program so
that it handles errors gracefully.

26

A Solution for Exercise 2
FileReader fileReader = null; // declare outside of the scope of the try block

try {
fileReader = new FileReader(fileName);
int c;
while ((c = fileReader.read()) != -1) {
System.out.print((char)c);

}
}
catch (FileNotFoundException notFoundEx) {
System.out.println("Could not open " + fileName);

}
catch (IOException ioEx) {
System.out.println("Error reading from " + fileName);

}
finally {
System.out.println();
if (fileReader != null) {
try { fileReader.close(); }
catch (IOException ioEx) { ; } // nothing we can do now!

}
}

27

Agenda

Part I recap
Looping constructs

for
while
do .. while

Exception handling
Exercise 1 and Exercise 2
Collections classes

Problems with arrays
Collection classes and the ArrayList

Exercise 3
Java 5 and Generics

28

Problems using arrays

• May not know size up front
• Unable to grow size

• Rigid structures
• May want unordered container

• Use java.util.collections
• Provide already defined data structures

29

Collection Classes

• What is available
• Set

• cannot contain duplicate elements

• List
• ordered collection or sequence
• can contain duplicate elements

• Queue
• hold multiple elements prior to processing
• additional insertion, extraction, and inspection operations

• Map
• maps keys to values
• cannot contain duplicate keys

30

Collection Classes

Set List Queue

Collection

Map

31

ArrayList

• import java.utils.*;

• List myList = new ArrayList();
• Why use List rather than ArrayList

• myList.add(Object)

• myList.get(int)

• myList.contains(Object)

ArrayList Vector LinkedList

List

32

ArrayList

• Complete list of methods
http://java.sun.com/j2se/1.5.0/docs/api/java/util/ArrayList.html

33

ArrayList

import java.util.*;

public class ArrayListExample1 {

public static void main(String[] args) {

List theChildren = new ArrayList();

theChildren.add("Jon");
theChildren.add("Jane");

System.out.println("number of children: " + theChildren.size());
System.out.println("First item: " + theChildren.get(0));
System.out.println("Second item: " + theChildren.get(1));

}
}

34

Exercise 3

• Modify the CommandLine program to
store the arguments in a ArrayList

• Query this array list to see if it contains a
specific value

35

Problem

try {

System.out.println("Last element: " +
theArguments.get(theArguments.size()-1));

} catch (java.lang.ArrayIndexOutOfBoundsException e) {

System.out.println("Accessing array with: " +
(theArguments.size()-1));

e.printStackTrace();

}

36

Agenda

Part I recap
Looping constructs

for
while
do .. while

Exception handling
Exercise 1 and Exercise 2
Collections classes

Problems with arrays
Collection classes and the ArrayList

Exercise 3
Java 5 and Generics

37

Problems with the exercise

• The solution worked without warnings for Java 1.4.2 but
not for Java 5

• Against theArguments.add(i); is the warning:

Type safety: The method addElement(Object)
belongs to the raw type Vector. References to
generic type Vector<E> should be parameterized

38

Java 1.4.2 and type checking

• In Java 1.4.2 (and before) type checking was the
responsibility of the programmer. List entries are of class
Object.

List theArguments = new ArrayList();

theArguments.add((String) "Hello");

String element = (String) the Arguments.get(0);

• Not very nice, the program has to do all the type
checking

1. Prone to mishtakes

2. Casting produces ugly code

39

Java 5 and Generics

• Java 5 introduces Generics

http://java.sun.com/j2se/1.5/pdf/generics-tutorial.pdf

// Before Java 5 ArrayLists entries are Objects

List theArguments = new ArrayList();

// In Java 5 it is possible to define the class of entries eg
String

List <String> theArguments = new ArrayList <String> ();

40

Java 5 and Generics

• So instead of (pre Java 5)

List theArguments = new ArrayList();
theArguments.add((String) "Hello");
String element = (String) the Arguments.get(0);

• we have:

List <String> theArguments = new ArrayList <String> ();
theArguments.add("Hello");
String element = the Arguments.get(0);

• Now the JVM does the type checking

41

Review

Part I recap
Looping constructs

for
while
do .. while

Exception handling
Exercise 1 and Exercise 2
Collections classes

Problems with arrays
Collection classes and the ArrayList

Exercise 3
Java 5 and Generics

