
Steve Ryder
Session 8351

JSR Systems (JSR)
sryder@jsrsys.com

Note: zip files for all lab exercise materials can be found at

www.jsrsys.com

Object Oriented Programming
Part I of II

mailto:sryder@jsrsys.com
http://www.jsrsys.com/

2

Objectives

Compare/Contrast OO Programming to Procedural
Programming

Introduction to these Object Oriented concepts:
Classes (think Program Load Module++)
Objects (think one copy of a Program in memory)
Class Data (think Working Storage)
Methods (think Performed Procedures or functions())
Some COBOL comparisons (from 2002 OO-COBOL session)

Understand the lifecycle of an object

3

COBOL vs. OO Comparisons

4

COBOL vs. OO Comparisons (2)

5

Shape Shifter Program

Specifications
Shapes on a GUI

• Square
• Circle
• Triangle

When user clicks on shape
• Shape will rotate clockwise 360 degrees
• An AIF sound file specific to that shape will play

6

Procedural Design

Write Important procedures

rotate(shapenum)
{

//make the shape rotate 360 degrees
}
playSound(shapenum)
{

//use shapeNum to lookup which
//AIF sound to play, and play it

}

7

Object Oriented Design

Write a class for each of the shapes

rotate() {
//code to rotate square
}

playSound(){
//code to play AIF
//for a square
}

Square

rotate() {
//code to rotate circle
}

playSound(){
//code to play AIF
//for a circle
}

Circle

rotate() {
//code to rotate
// triangle
}

playSound(){
//code to play AIF
//for a triangle
}

Triangle

8

A Specification Change

Add amoeba shape

When user clicks on amoeba
Shape will rotate
An .hif sound file will play

9

Procedural Design

Change previously-tested code
Rotate procedure will work as-is
PlaySound procedure must change

playSound(shapenum)
{

//if the shape is not an amoeba,
//use shapenum to look up the AIF

//else
//play amoeba .hif sound

}

10

Object Oriented Design

Write one new class

No need to touch previously-tested code

rotate()
{

//code to rotate
// amoeba
}
playSound()
{
//code to play .hif
//for a amoeba
}

Amoeba

11

User Testing – Another Change

All of the shapes rotated around the center of the
shape.

The amoeba shape, however, should rotate around
a point at one end. Like this:

12

Procedural Design

Add rotation point arguments to the rotate
procedure

A lot of code was affected
rotate(shapenum, xPt, yPt)
{

//if the shape is not an amoeba
//calculate the center then rotate

//else
//us the xPt and yPt as the
//rotation point then rotate

}

13

Object Oriented Design

Change rotate only in the amoeba class

int xPoint;
int yPoint;
rotate()
{

//code to rotate //amoeba using
//x and y coordinates

}
playSound()
{

//code to play .hif
//for a amoeba

}

Amoeba

14

Object Oriented Design concepts

Class (think Program Load Module++)

Object (think one copy of a Program in memory)

Method (think Performed Procedure or function)

Class Data (think Working Storage)

15

Finding Classes

Look for nouns in the specification
“Customers phone in and place an order for one or

more items. The customer service representative
creates a new order and adds the items to it. Next
the shipping address and payment details are taken
so that the order can be shipped and the customer’s
account charged.”
Customer
Order
Item
Can you find others?

16

Objects

What is the difference between a class
and an object?

A class is not an object but…
It is used to construct them

A class is a blueprint for an object
It explains how to make an object of that type
Each object made from that class can have its own
instance variables

17

Objects

Think of an object like a pack of blank RolodexTM

cards.
Each card has the same instance variables (blank
fields)

A completed card creates an object instance of
a class

The specific entries on each line represent the
object’s state (name, phone, address)

18

Class Data and Methods

When you design a class, you think about the objects
that will be created from that class. You think about:

Things the object knows

Things the object does

int xPoint;
int yPoint;
rotate() {
//code to rotate //amoeba
using
//x and y coordinates
}
playSound(){
//code to play .hif
//for a amoeba
}

Amoeba

knows

does

19

Class Data and Methods

Things an object knows about itself are called
Instance variables

Things an object can do are called
Methods

char label
int color;

setColor()
setLabel()
depress()
undepress()

Button

Instance
variables

Methods

20

Your First Object

What does it take to create and use an object?
You need two classes

• One for the type of object you want to use
• One to test your new class

int size
char breed
char name

bark()

Dog

main()

DogTestDrive

21

Write the Dog class

class Dog

{
int size;
String breed;
String name;

void bark()
{

System.out.println(“Ruff! Ruff!”);
}

}

22

Write the DogTestDrive class

class DogTestDrive

{
public static void main (String [] args)
{

Dog d = new Dog();
d.size = 40;
d.bark();

}

} // Need main(String[] args) to exec from command line

// could just add main to Dog class!

23

The Behavior of an Object

Instance variables affect method behavior
Every instance of a particular class has the same
methods
But, the methods can behave differently based on
the value of the instance variables.

24

The Song class

Two instance variables: title and artist.

Methods to set the title and artist

A method to play a song
String title=“ “;
String artist

setTitle()
setArtist()
play()

Song

25

The Song class

Song t2 = new Song();

t2.setArtist(“Travis”);

t2.setTitle(“Sing”);

Song t3 = new Song();

t3.setArtist(“Sinatra”);

t3.setTitle(“My Way”);

Song t4 = new Song();

t4.setArtist(“Sex Pistols”);

Sing

Travis

Sex
Pistols

My Way

Sinatra

t2

t3

t4

26

The Lifecycle of an Object

Creating objects

Using objects

Cleaning up unused objects

27

Creating an object

This statement initiates a reference to a new object
and calls the constructor.

Dog d = new Dog();

The new operator allocates memory for the object
The reference to the new object

Calls the constructor method of the Dog class

Defines the type of reference

28

Constructors

A special method defined in the class.
Initializes the state of an object
Makes sure the new object is ready for use

Every class has a default constructor that takes
no arguments

You can also provide your own constructors
There can be many as long as each is differentiated by the
number and type of arguments
Constructors with arguments are called with statements like this:

• Dog d = new Dog(name, size);
• Dog d = new Dog(breed, name, size);

29

Using an object

The Dot Operator
The dot operator gives you access to an object’s state
and behavior

• Make a new object
Dog d = new Dog();

• Call one of the object’s methods
d.bark();

• Set one of the object’s instance variables
d.size = 40;

30

The Java Heap

Each time an object is created in Java, it goes
into an area of memory known as the Garbage-
Collection heap

All objects no matter when or how created go on the
heap
Upon object creation, Java allocates memory space on
the heap according to the object’s needs

31

Cleaning up

When an object is no longer in use, it becomes
eligible for garbage collection

If you’re running low on memory, the GC will
run and throw out the unreachable objects

32

Counting References

The Java Runtime keeps track of the references
to an object

When the number of references drops to zero,
the object without a reference is marked for
collection

33

Garbage Collection

1

2

Book a = new Book();

Book b = new Book();

b

a

Active References: 2

Reachable Objects: 2

Abandoned Objects: 0

34

Garbage Collection

1

2

b = a;

b

a

Active References: 2

Reachable Objects: 1

Abandoned Objects: 1

35

Garbage Collection

1

2

b = a;

b

a

Active References: 2

Reachable Objects: 1

Abandoned Objects: 1

Java
says,

“Come
and get

it.”

36

Garbage Collection

1

2

Sometime later….

b

a
GC

37

Revisiting the Objectives

Compare/Contrast OO Programming to Procedural
Programming

Add/change features without touching tested code

38

Revisiting the Objectives

Introduction to these Object Oriented
concepts:

Classes
• Look for nouns in specification
• The blueprint for an object

Objects
• The realization of a class

Class Variables
• Things an object knows

Methods
• Things and object does

39

Revisiting the Objectives

Understand the lifecycle of an object
A constructor starts it
The heap holds it
The Garbage Collector clears it

