
Session 1183: Java Lab: Eclipse and Abstraction (Lab of session 1180: OO Introduction). Page 1 of 14

Agenda

Inheritance and relationships
Lab Exercises (see examples of polymorphic overloading, encapsulation, and inheritance)
Make changes to programs to illustrate benefits of Inheritance and encapsulation.
Abstraction and interfaces
Lab Exercises

Steps I took at home to create Eclipse Projects from plain source
(C:\jsr\Java\source).

1) Create shortcut to old java source directory
2) Build JsrUtil Project and create shortcut to it's src.
3) Copy Programs into JsrUtil\src that you want in this project.
4) Refresh, if missing any dependencies, then copy it.
5-7) Repeat 1-3 but with Reports as project name.
8) Add JsrUtil Project to build path.

Session 1183: Java Lab: Eclipse and Abstraction (Lab of session 1180: OO Introduction). Page 2 of 14

Now:

Open JavaLabs Denver
MakeJLdata.bat (creates C:\JavaLabs empty folder).
Click on Eclipse Icon.

X (close) Welcome screen

Create New Project

Session 1183: Java Lab: Eclipse and Abstraction (Lab of session 1180: OO Introduction). Page 3 of 14

Session 1183: Java Lab: Eclipse and Abstraction (Lab of session 1180: OO Introduction). Page 4 of 14

And click Finish

Check and click Yes.

Repeat Above for “Reports” Project

Session 1183: Java Lab: Eclipse and Abstraction (Lab of session 1180: OO Introduction). Page 5 of 14

Now Import JsrUtil from File System

Session 1183: Java Lab: Eclipse and Abstraction (Lab of session 1180: OO Introduction). Page 6 of 14

Navigating from Desktop down to JavaLabs Denver to Exercise Imports to JsrUtil

Session 1183: Java Lab: Eclipse and Abstraction (Lab of session 1180: OO Introduction). Page 7 of 14

Select Resouce (check the box infrom of JsrUtil, note Export location is filled in as JsrUtil) and click Finish.

Click Yes To All

Expand JsrUtil

Session 1183: Java Lab: Eclipse and Abstraction (Lab of session 1180: OO Introduction). Page 8 of 14

Repeat above for Reports...

Navigate to Lab3 Runtime and click on IbfExtract.bat

Session 1183: Java Lab: Eclipse and Abstraction (Lab of session 1180: OO Introduction). Page 9 of 14

Press Enter and notice extra files in directory...
Click IPFReport1.bat, pressing enter at the pause.

Click logReport1.txt This is a Xerox format file.
Lets look at how we were able to run Eclipse classes, while developing, without having to Export to a JAR file, which you
would want to do for production.

The setJVM.bat file sets the JVM variable. The set classloc sets the location inside the Eclipse workspace where the
class files are compiled. This is not visible to you from Eclipse.

Session 1183: Java Lab: Eclipse and Abstraction (Lab of session 1180: OO Introduction). Page 10 of 14

If you navigate to JavaLabs Denver, and click the Eclipse Reports icon you will open an Explorer window into the src
directory for the Reports project.

Click the up Arrow and you will see the actual directory structure:

Click the bin folder and you will see the classes.

Session 1183: Java Lab: Eclipse and Abstraction (Lab of session 1180: OO Introduction). Page 11 of 14

The above code is from a project that I did several years ago (convert a COBOL extract and report job stream running
on zOS to run on an NT box). I had convinced my client up front that it would cost him less than the cost of a COBOL
compiler for me to just do it in Java. I actually developed on a Windows 98 box and it ran without a hitch on the NT
box AND it ran faster on the NT box. The speed advantage was because COBOL did not have the ability to dynamically
create a variable number of output files based on user input. The data files consisted of discrete sub-sets of data
(report type and region). The COBOL application just sorted the whole file one time. Then each report (about 20
different executions of 3 different reports in the production environment) read the WHOLE file! I wrote a simple
extract that simply split the file into 20 separate files (a simple trick of creating a new instance of JsrLineOut for each
report-type, region combination). Then each report sorted one file (1/20th of the original sort so it was sorted in
memory), and "printed" the report.

Examine JsrUtil for examples of overloading (a form of polymorphism) and useful ways to do things in Java to
mimic COBOL behavior.

Examine JsrSysout for examples of class and instance variables and how they might be useful.

Examine JsrLineIn and JsrLineOut as a useful example of encapsulating I/O logic (especially the exception
handling).

Examine IbfExtract and file IbfTest.txt as an example of allocating multiple output files depending on contents
of input file. Run IbfExtract.bat. Examine console (benefits of JsrSysout). Open logIbfExtract.txt

Examine IbfReport (example of Super Class)

Examine IbfReport1 (example of a sub-class)

Run IbfReport1 using IPFReport1.bat

Session 1183: Java Lab: Eclipse and Abstraction (Lab of session 1180: OO Introduction). Page 12 of 14

Your assignment:

Modify IbfReport. This illustrates power of Abstract classes to force sub-classes to implement required
methods. Make all the methods under // it is expected... abstract. Note they all get errors. Hint: move the
keys = line up to the initial definition of keys...

Now add abstract in front of class

Oops, that is OK we will do that in IbfReport* class
Remove the main method and there are no errors.
There are no errors in IbfReport1 because all the methods are invoked. Remove one of the methods.

Session 1183: Java Lab: Eclipse and Abstraction (Lab of session 1180: OO Introduction). Page 13 of 14

Paste the removed method back.
Run IbfReport1 again.
Copy IbfReport and rename copy IbfReportRTF
Change IbfReportRTF to use JsrRTF instead of JsrLineOut.

Also remove the xerox header line after output.setName:

Hint: in newPage method, invoke setPage() method.

Hint2: Look in the JavaDoc section of ExerciseImports in JavaLabs Denver and
click on the index.html tab for methods in JsrRTF.
Change IbfReport1 to extend IbfReportRTF and run again.

There is lots more you could do to “clean-up” IbfReportRTF. In the real world you would probably want a class
ReportRTF that has the logic not specific to the Ibf Reports. Then IbfReport would extend ReportRTF and IbfReport1
would extend IbfReport as it does now...

Session 1183: Java Lab: Eclipse and Abstraction (Lab of session 1180: OO Introduction). Page 14 of 14

Questions?

