
Java and Eclipse
for Beginner Part I

Session 1181

Presented by

Theresa Tai
IBM System z New Technology Center
Poughkeepsie, New York
ttai@us.ibm.com

Housekeeping Reminder

 No food or drink in the Lab

 Please silent mobile phones

 Don't hesitate to ask questions

 Have fun!

Content

 Lecture

What is Java?

Java Basics

Java Code Structure

Eclipse Basics

 Hands-on Lab

Explore the Eclipse Development Environment

Write and Run Simple Java Applications

What is Java?

 A platform

Software only

Runs on top of hardware platforms

Two components:
 JVM – Java Virtual Machine

API – Application Programming Interface

 A programming language

Compiled and Interpreted

 Java software platform consists of

The Java language, JVM and Java class libraries

What is Java Language?

 A programming language (has some of the characteristic as C++)

 Source code in plain text files with a .java extension

 Compiled and interpreted

 .java source files compiled into .class files

Java
Program

Compiler

Interpreter

Running
Program!

M
yP

rogram
.java M

yP
ro

gr
am

.c
la

ss

0010110100

Java Bytecodes

 Instructions for the Java Virtual Machine (JVM)

 Write Once, Run Anywhere
Compiled bytecode is platform independent
Any device capable of running Java will be able to

interpret bytecode into platform specifics

 Development Tools
The Java compiler (javac)
The Java launcher (java)
The Java documentation tool (javadoc)

The Java Platform

Java
Source

System Control Program

Hardware

Java Virtual Machine

& JIT

Java
compiler

JFC

Application APIs

Collection of
Standard Java

APIs

Class Libraries

z/OS
z Linux
AIX

AS/400

Linux

WinTel

....

DebuggerLine
Editor

SDK

Benefits of Java

 Get started quickly

 Write less code

 Write better code

 Write programs faster

 Avoid platform dependencies

 Write once, run anywhere

 Distribute software more easily

 Network enabled

The Java APIs and Integration Libraries

 Application Programming Interfaces (APIs)

 Provides the core functionality of the Java
programming language

 A set of class libraries
 From basic objects, to networking and security, XML

generation and database access

 Programmers uses when writing Java source code

 Included in Java platform

 Prewritten code
 Organized into packages of similar topics

 Integration Libraries
 IDL, JDBC, JNDI, RMI and RMI-IIOP

 Enable database access and manipulation of remote
objects

API Packages

 Applets

 Internationalization

 Security

 Graphical User Interface

 Serialization

 Java Database Connectivity (JDBC)

Java Code Structure

 Source file
 Java source code
 .java file extension

 Holds class definition

 Class
 A construct defines data

and methods
 One or more methods

 Methods
 One or more sequence of

statements

 Statements
 Typically operate on data

Source

Class

Method 1

Method 2

Statements

Statements

Anatomy of a class

public class MyFirstApp {

public static void main (String[] args) {

System.out.println(“I rule!”);

}

}

The fundamental building block in Java
programming language is the class

Java Class

The “{“ mark the
beginning of the

class

The “}” mark the end
of the class

The name
of the class

Java Class

A class in and of itself is not an object… Its
like a blueprint that define how object will
look and behave when the object is created
or instantiated from the specification declared
by the class… just as you can construct many
houses all the same from the same
blueprint/architecture drawing.

Anatomy of a main Method

public static void main (String[] args) {

System.out.print(“I rule!”);

}

The method does one
thing that is to print

“I rule!”

The entry point to every application is its main
method

The method
returns no value

The name
of the

method

The
arguments
for the main

method

Basic Java Syntax

 Comments

 Variables and Data
Types

 Primitive Data Types

 Reference Data
Types

 Operators

 Expressions

 Arrays

 Strings

Please see the crib sheet included in the hands-on lab
instructions document

Classloaders and classpath

 Classloaders
 Bootstrap - classes from core Java APIs

 Extensions - classes that are standard extensions packages in the
extensions directory

 Application - classes from the local file system and it will load your
application from the CLASSPATH

 classpath
 A user defined environment variable used by Java runtime to

determine where predefined/user-defined classes are located

 User-defined classes that are complied with the javac compiler
 i.e. command-line MyProgram.java  MyProgram.class

Strings

 The String class is included in the
 java.lang.Object package

 The String class represents character strings

 When you declare and use a String, you are
actually using an instance of the String class

 Basic use of a String

String s = “Hello World! ”;

String t = “Look at Me.”;

System.out.println(s + t);

Hello World! Look at Me.

Anatomy of an Array

int[] nums;

nums = new int[3];

nums[0] = 1;
nums[1] = 2;
nums[2] = 3;

Declares an array of int’s
named “nums”

Instantiates an Array object
with the key word “new”

Gives the Array object
a length of [3]

Gives each
element a
value

Arrays

 Array class is included in the java.lang.Object package

 The Array class contains various methods for manipulating arrays

 Access array elements using []  anArray[0] = 10;

 Special array property length  anArray.length

 Declare as type[] varName;  int[] myInts;

 Must allocate memory before use  myInts = new int[10];

 General form  elementType[] arrayName=new elementType[arraySize];

jihgfedcba

0 1 2 3 4 5 6 7 8 9

First Index 7th element at index 6 is “g”

Array length is 10

Sample Array

int [] squares = new int[5]; // create an array of integers

squares[0] = 100; // initialize first element

squares[1] = 200; // initialize second element

squares[2] = 300;

squares[3] = 400;

squares[4] = 500;

If … then … else

If the condition is false, then the statements in
the else block are executed.

if (expr) {

then_stmnts;

}

else {

else_stmnts;

}

if (a < 10) {

System.out.println("a < 10");

}

else {

System.out.println("a >= 10");

}

Nested If ... then … else

if (expr) {

then_stmnts;

}

else if (expr_1) {

else_stmnts;

}

else {

else_stmnts;

}

int testscore; (int testscore=88;)

char grade;

if (testscore >= 90) {

grade = 'A';

} else if (testscore >= 80) {

grade = 'B';

} else if (testscore >= 70) {

grade = 'C';

} else if (testscore >= 60) {

grade = 'D';

} else {

grade = 'F';

}

Break

 Like continue, but abandons entire loop instead of current
iteration

 Can also use labels on break statements

 The break statement has two forms

 Labeled and unlabeled

 You can also use an unlabeled break to terminate a for, while,
or do-while loop

for (int i = 0; i < array.length; i++) {

if (array[i] == 0) {

break; // stop processing at first zero entry

}

// process element...

}

first:

for (int i = 0; i < array.length; i++) {

if (array[i] == 0) {

break first;

}

// process element...

}

For loops example

Common short hand:

for (int i=0 ; i < 10 ; i++) {

System.out.println("i = " + i);

}

int i;

for (i=0 ; i < 10 ; i++) {

System.out.println("i = " + i);

}

 i = 0

 i = 1

 i = 2

 ...

 i = 9

Note: you can skip the “ int I; “

While Loops

while (boolean_expr) {

stmnts;

}

 expr evaluated at top of each loop
 body executed if expr evaluates to true
 Make sure your loop terminates!

int i = 0;

while (i < 10) {

System.out.println

("i = " + i);

i++;

}

i = 0

i = 1

i = 2

...

i = 9

do .. while Loops

do {

stmnts;

} while (boolean_expr);

 body executed each time through the loop
 boolean_expr is evaluated at the end of the loop
 body of the loop is always executed at least once

int i = 0;

do {

System.out.println

("i = " + i);

i++;

} while (i < 10);

i = 0

i = 1

i = 2

...

i = 9

What is Eclipse?

 Eclipse is an open source community whose projects are
focused on building an extensible development platform,
runtimes and application frameworks for building,
deploying and managing software across the entire
software lifecycle

 Four download packages
 Java IDE - If you are a Java developer

 Java EE - If you are a Java developer creating Java EE
application

 C/C++ IDE – if you are a C/C++ developer

 RPC - If you are planning to build Eclipse plugins and/or RPC
applications

Eclipse Basics

 The Workbench
Workbench refers to the desktop development environment
Each Workbench window contains one or more Perspectives
More than one Workbench window can exist on the desktop

at any given time

 Perspectives
Contain views and editors
Menus and tool bars

 Plug-ins
Eclipse based product is structured as a collection of plug-ins
Each plug-in contains the code that provides some of the

product's functionality

 Software Updates
Under “Help” view pull down

Workbench Basics
 Resources

 Projects
 Files
 Folders

 Import Wizard
 Importing from the local file system
 Menu bar File Import

 Importing existing projects
 Importing resources from a zip file

 Export Wizard
 Exporting to the file system
 Exporting to an archive file

 Editors
 More than one editor can be opened at the same time but only one can be

active

 Console View
 Running your Java Application
 Messages will be displayed in the Console View
 Problem View – syntax error, warnings…

About Eclipse Tooling

 Free download from http://www.eclipse.org
 Click on
 The Java for the Beginner Labs use the Eclipse IDE for Java

Developers


 The Java EE Developer


 IBM development tooling such as WSAD, WSDD, WSAD/IE and
RAD are extensions to Eclipse

 Eclipse is an excellent starting point for learning Java
development on your own
 Start with workbench basics and tutorials

 Eclipse tool hints and tips
 Click Help > “Tips and Tricks” from the menu bar

Eclipse Workspace at a Glance

 The Java and Resource Perspective
Editing, and syntax checking
Automatic code completion, identifying errors
Executing programs

 The Debug Perspective (session 1182 Lab II)
 Local Debugging
Remote Debugging

 About testing with JUnit
Testing is an integral part of development

 Javadoc
 Tool for generating documentation

• doc comments in source code
• HTML format

• Java API documentation
• http://java.sun.com/j2se/javadoc/

Console Area

Java Perspective

Run

Lab Exercises

 Labeled Loop

 Do While Loop

 Command-Line

 SumAverage

Please follow the Lab instructions, Have fun!
Feel Free to Ask Questions…

Sample Solution: Labeled Loop w/break
Statement

public class LoopLabel {
public static void main (String arguments[]) {

myloop:
for (int i = 1; i <= 6; i++)
for (int j = 1; j <= 4; j++) {

System.out.println("i is " + i + ", j is " + j);
if ((i + j) > 5)
break myloop;

}
System.out.println("End of loops");

}

}

Exercise #2: do…while

class DoWhileLoop {
Public static void main (String arguments[]) {

int a = 1;
do {

System.out.println(“Looping, round # “ + a);
a++;

}
while (a <= 10);

}
}

class DoWhileLoop {
public static void main (String arguments[]) {

int a = 1;
do { ………. }
while (a <= 10);

System.out.println("Existing Do While Loop!");
}

}

Exercise #3: Command-Line
SumAverage

public class SumAverage {
public static void main(String arguments[]) {

int sum = 0;

for (int i = 0; i < arguments.length; i++) {
sum += Integer.parseInt(arguments[i]);

}

System.out.println("Sum is: " + sum);
System.out.println("Average is: " +

(float)sum / arguments.length);
}

}

The Future Runs on System z

Thank You!

