
Steve Ryder
Session 1180

JSR Systems (JSR)
sryder@jsrsys.com

Note: zip files for all lab exercise materials can be found at

www.jsrsys.com

Object Oriented Programming
Introduction

mailto:sryder@jsrsys.com
http://www.jsrsys.com/

2

Objectives

Compare/Contrast OO Programming to Procedural
Programming

Introduction to these Object Oriented concepts:
Classes (think Program Load Module++)
Objects (think one copy of a Program in memory)
Class Data (think Working Storage)
Methods (think Performed Procedures or functions())
Some COBOL comparisons (from 2002 OO-COBOL session)

Understand the lifecycle of an object

3

COBOL vs. OO Comparisons

4

COBOL vs. OO Comparisons (2)

5

Shape Shifter Program

Specifications
Shapes on a GUI

• Square
• Circle
• Triangle

When user clicks on shape
• Shape will rotate clockwise 360 degrees
• An AIF sound file specific to that shape will play

6

Procedural Design

Write Important procedures

rotate(shapenum)
{

//make the shape rotate 360 degrees
}
playSound(shapenum)
{

//use shapeNum to lookup which
//AIF sound to play, and play it

}

7

Object Oriented Design

Write a class for each of the shapes

rotate() {
//code to rotate square
}

playSound(){
//code to play AIF
//for a square
}

Square

rotate() {
//code to rotate circle
}

playSound(){
//code to play AIF
//for a circle
}

Circle

rotate() {
//code to rotate
// triangle
}

playSound(){
//code to play AIF
//for a triangle
}

Triangle

8

A Specification Change

Add amoeba shape

When user clicks on amoeba
Shape will rotate
An .hif sound file will play

9

Procedural Design

Change previously-tested code
Rotate procedure will work as-is
PlaySound procedure must change

playSound(shapenum)
{

//if the shape is not an amoeba,
//use shapenum to look up the AIF

//else
//play amoeba .hif sound

}

10

Object Oriented Design

Write one new class

No need to touch previously-tested code

rotate()
{

//code to rotate
// amoeba
}
playSound()
{
//code to play .hif
//for a amoeba
}

Amoeba

11

User Testing – Another Change

All of the shapes rotated around the center of the
shape.

The amoeba shape, however, should rotate around
a point at one end. Like this:

12

Procedural Design

Add rotation point arguments to the rotate
procedure

A lot of code was affected
rotate(shapenum, xPt, yPt)
{

//if the shape is not an amoeba
//calculate the center then rotate

//else
//us the xPt and yPt as the
//rotation point then rotate

}

13

Object Oriented Design

Change rotate only in the amoeba class

int xPoint;
int yPoint;
rotate()
{

//code to rotate //amoeba using
//x and y coordinates

}
playSound()
{

//code to play .hif
//for a amoeba

}

Amoeba

14

Object Oriented Design concepts

Class (think Program Load Module++)

Object (think one copy of a Program in memory)

Method (think Performed Procedure or function)

Class Data (think Working Storage)

15

Finding Classes

Look for nouns in the specification
“Customers phone in and place an order for one or

more items. The customer service representative
creates a new order and adds the items to it. Next
the shipping address and payment details are taken
so that the order can be shipped and the customer’s
account charged.”
Customer
Order
Item
Can you find others?

16

Objects

What is the difference between a class
and an object?

A class is not an object but…
It is used to construct them

A class is a blueprint for an object
It explains how to make an object of that type
Each object made from that class can have its own
instance variables

17

Objects

Think of an object like a pack of blank RolodexTM

cards.
Each card has the same instance variables (blank
fields)

A completed card creates an object instance of
a class

The specific entries on each line represent the
object’s state (name, phone, address)

18

Class Data and Methods

When you design a class, you think about the objects
that will be created from that class. You think about:

Things the object knows

Things the object does

int xPoint;
int yPoint;
rotate() {
//code to rotate //amoeba
using
//x and y coordinates
}
playSound(){
//code to play .hif
//for a amoeba
}

Amoeba

knows

does

19

Class Data and Methods

Things an object knows about itself are called
Instance variables

Things an object can do are called
Methods

char label
int color;

setColor()
setLabel()
depress()
undepress()

Button

Instance
variables

Methods

20

Your First Object

What does it take to create and use an object?
You need two classes

• One for the type of object you want to use
• One to test your new class

int size
char breed
char name

bark()

Dog

main()

DogTestDrive

21

Write the Dog class

class Dog

{
int size;
String breed;
String name;

void bark()
{

System.out.println(“Ruff! Ruff!”);
}

}

22

Write the DogTestDrive class

class DogTestDrive

{
public static void main (String [] args)
{

Dog d = new Dog();
d.size = 40;
d.bark();

}

} // Need main(String[] args) to exec from command line

// could just add main to Dog class!

23

The Behavior of an Object

Instance variables affect method behavior
Every instance of a particular class has the same
methods
But, the methods can behave differently based on
the value of the instance variables.

24

The Song class

Two instance variables: title and artist.

Methods to set the title and artist

A method to play a song
String title=“ “;
String artist

setTitle()
setArtist()
play()

Song

25

The Song class

Song t2 = new Song();

t2.setArtist(“Travis”);

t2.setTitle(“Sing”);

Song t3 = new Song();

t3.setArtist(“Sinatra”);

t3.setTitle(“My Way”);

Song t4 = new Song();

t4.setArtist(“Sex Pistols”);

Sing

Travis

Sex
Pistols

My Way

Sinatra

t2

t3

t4

26

The Lifecycle of an Object

Creating objects

Using objects

Cleaning up unused objects

27

Creating an object

This statement initiates a reference to a new object
and calls the constructor.

Dog d = new Dog();

The new operator allocates memory for the object
The reference to the new object

Calls the constructor method of the Dog class

Defines the type of reference

28

Constructors

A special method defined in the class.
Initializes the state of an object
Makes sure the new object is ready for use

Every class has a default constructor that takes
no arguments

You can also provide your own constructors
There can be many as long as each is differentiated by the
number and type of arguments
Constructors with arguments are called with statements like this:

• Dog d = new Dog(name, size);
• Dog d = new Dog(breed, name, size);

29

Using an object

The Dot Operator
The dot operator gives you access to an object’s state
and behavior

• Make a new object
Dog d = new Dog();

• Call one of the object’s methods
d.bark();

• Set one of the object’s instance variables
d.size = 40;

30

Revisiting the Objectives Part A

Compare/Contrast OO Programming to Procedural
Programming

Add/change features without touching tested code

31

Revisiting the Objectives Part A

Introduction to these Object Oriented
concepts:

Classes
• Look for nouns in specification
• The blueprint for an object

Objects
• The realization of a class

Class Variables
• Things an object knows

Methods
• Things and object does

32

Objectives for Part B

Inheritance (ex: Class Dog extends Class Animal)
behaviors common to many animals would be coded in just
Animal, classes such as Dog, Cat, or Tiger are said to inherit
the behaviors of Animal (know as the super class).

Polymorphism (ex: method overloading…)

Abstract (classes with abstract methods can not be
instantiated, only classes that extend them AND implement
the abstract methods can be instantiated)

Interfaces (the solution to multiple inheritance)

33

Inheritance

COBOL: COPY or INCLUDE
Java: Inheritance
++: Much more powerful

Don’t have to recompile to
“Inherit”. The “inheritance”
happens at run time.

34

The Circle class

class Circle {

// Data encapsulated by the class
private SimplePoint center;
private int radius;

// Methods that form external interface
public double circumference() { ... }
public double area() { ... }
public SimplePoint getCenter() { return center; }
public int getRadius() { return radius; }

}

35

The GraphicCircle class inherits..

class GraphicCircle extends Circle
{

public void draw(Graphics g) { ... }
}

36

GraphicCircle extended/inherited…

GraphicCircle is defined as an extension of
the Circle class
We call it a subclass
GraphicCircle has all of the functionality of
Circle, plus its own additional methods
(and data)
We say that GraphicCircle inherits the
functionality of Circle
We call the act of extending a class
“inheritance”

37

Inheritance

GraphicCircle is a Circle
You can use it anywhere a Circle is
required
ƒ public aMethod(Circle c)

You can treat it just like a Circle when you
use it
ƒ graphicCircle.getRadius()

Use inheritance when you have an "is a"
relationship

38

Other key relationships

"is a" -> inheritance
"has a" -> data member (e.g. Circle has a
SimplePoint, its center) - containment
"uses" class A uses class B if:
ƒ a method of A sends a message to an object

of class B
ƒ a method of A creates, receives or returns

objects of class B
ƒ try to minimize the number of classes that

use each other

39

Limits to Subclassing

How many levels deep can you go
when
designing subclasses?

Most Java API inheritance hierarchies
are wide but not deep.
Most stay within one to two levels deep.
It’s good practice, generally, to keep your
hierarchy shallow but there is no hard
limit that you are likely to encounter.

40

Method Overriding

If you are unable to change the code for a
given class, yet you need to change how it
works, you can extend a class and override
the method with new, better code.

41

Do Not Extend…

There are three things that can prevent a class
from being extended, or subclassed:

1. There is no public declaration.

2. The class has the a final access modifier.

3. The class has only private constructors.

42

Why use final?

Make a class final only if you need the
security of
knowing that all methods will work as

originally
written.

Make a method final if you want to protect
only
certain methods within a class.

43

Rules for Overriding

When overriding a method from a superclass,
you
are, in effect, agreeing to a contract.

Here are the rules for overriding a method:
Arguments and return types must be the same.
Access levels on the subclass must be equal to or
more lenient than the superclass.

44

Overloading

Overloading is having two methods with the
same name but different arguments.

Overloaded methods have great flexibility:
1. Return types can be different as long as the

arguments are different types.
2. The return type can not be the only thing changed.
3. You can vary the access levels in any manner.

45

Review

Try to keep class hierarchies one to two levels deep.
Method Overriding can be used as a do-over when you can not
change existing code.
You can not extend a class that has no public declaration, is declared
final, or has private constructors.
Use final to secure a class when you don’t want any of the class to
change.
Use final to secure a method when you only want certain methods to
remain unchanged.
Overriding = agreeing to the superclass’ contract. Arguments and
return types must be the same. Access levels must be the same or
less restrictive.
Overloading = two or more methods with same name but different
arguments (in type or number) and/or return types.

46

Abstract and Interfaces

Abstract classes

Abstract methods

Object class

Interfaces

47

Abstract Classes

Keep duplicate code to a minimum.

Override generic methods.

Flexible because of Animal subtypes that can be
designed in the future and used in any method
expecting an Animal object as an argument.

Creates a common protocol for all animals that
are related to the Animal superclass.

48

Abstract Classes

Sample Animal class hierarchy

Animal

Wolf

Canine Bird Reptile

49

Abstract Classes

Given the class design on the previous slide, the
following declarations are valid:

Animal aBird = new Bird();
Canine aWolf = new Wolf();
Wolf aWolf = new Wolf();

But what about this?
Animal anim = new Animal();

What would an Animal object look like?

Greep!
Greep!

50

Abstract Classes

The Animal class is necessary for the inheritance
and polymorphism we’ve been covering.
However …

• Programmers should only be able to instantiate the more concrete subclasses
like Wolf because those have shapes, sizes, and behaviors that are well-
defined.

To stop a class from being instantiated, make the
class abstract.

abstract class Animal

abstract class Canine extends Animal

51

Abstract Methods

An abstract method must be overridden.

An abstract method has no body.

public abstract void eat();

If you declare a method as abstract, you must
declare the class abstract as well.

52

Abstract Methods

What can an abstract method be used
for?

The point of an abstract method is that even
without any actual code, you still have defined
part of the protocol for a group of subclasses.

53

Abstract Methods

What if there are two abstract classes in
the
hierarchy?

A subclass can ‘pass the buck.’
If Animal and Canine are both abstract, the first
concrete class to extend Canine must
implement all abstract methods from both
Animal and Canine.

54

Review

Abstract classes and methods are useful for keeping
duplicate code to a minimum while maintaining a protocol
for a group of classes.
An abstract class can not be instantiated. This forces the
programmer to instantiate only the more specific (or
concrete) subclasses.
Abstract methods define the behaviors that all subclasses
must have. Each subclass has its own unique way to
implement the behaviors.
The first concrete class in the hierarchy (Wolf from Canine
and Animal) must implement all abstract methods from
both Canine and Animal.

55

The Parent of all Classes

class Object

Every class in Java extends the Object class

Any class that does not explicitly extend
another class implicitly extends Object.

56

The Dot Operator

The Dot operator (.) gives you access to an object’s
state and behavior

//Make a new Object

Dog d = new Dog();

//Call the Dog’s bark method

d.bark();

//Set the size of the Dog

d.size = 40;

57

Object Class Methods

Two methods available to every object

1. equals(Object o)

2. getClass()

58

equals()

Tests if one object is equal to another object
Object object1 = new Object;
Object object2 = new Object;
if object1.equals(object2)
{

System.out.println(“True”);
}
else
{

System.out.println(“False”);
}

59

getClass()

Returns the class from which a particular object
was instantiated

Cat c = new Cat();

System.out.println(c.getClass());

Displays “Cat”

60

Review

All objects that do not explicitly extend another
class implicitly extend the Object class

There are a number of useful methods in the
Object class that can be used with any object --
equals() and getClass() are a few examples

61

Pet Shop Program: Intro to Interfaces

What if the Dog class that was written for any
type of dog was needed as a pet in another
program?

The Dog class would need new pet-oriented
methods such as play(), sit(), rollover(), etc..

Let’s review three design options to make this
happen…

62

Pet Shop – Design Option 1

Put pet methods in Animal class
Pros

All Animals instantly inherit pet behaviors
We won’t have to touch existing Animal subclasses
Any Animal subclass created in the future will get the pet methods
Any program wanting to treat animals as pets can use the Animal class
as a polymorphic argument or return type

Cons
ALL animals inherit pet behaviors even lions, tigers, and bears – oh, my!
There are sure to be changes required to the subclasses like Dog and
Cat because they would implement pet behaviors very differently

63

Pet Shop – Design Option 2

Put pet methods in the Animal class but make the
methods abstract, forcing the subclasses to override them

Pros
All the benefits of option1 are realized plus there would be no unwanted
animals with pet attributes
The abstract methods that must be overridden can be empty

Cons
Every subclass of Animal would have to have pet methods even if they
aren’t needed
The existence of Pet methods in the subclasses would be misleading as
pet behaviors would be expected from those methods

64

Pet Shop – Design Option 3

Put the pet methods only in the classes where
they belong
Pros

The pet methods are only where they belong.

Cons
There is no way for other programmers to know what the protocol
for establishing or using pet behaviors and no way for the
compiler to make sure pet-like methods are implemented
correctly
The Animal class could not be used as the polymorphic type
because the compiler will not let you call a pet method on an
Animal reference

65

Pet Shop – Best Design

Create two superclasses: Animal and Pet

Give the Pet class all of the Pet methods

Have subclasses that should use Pet
methods extend both the Animal and Pet
classes

66

Interfaces

Java provides a tool called an interface because
you can not extend two classes

An interface is a class with the keyword interface
as part of the class declaration

In an interface, all methods are abstract

All subclasses (of the interface) must implement
the interface’s methods

67

Interfaces

To define an interface

public interface Pet { … }

To implement an interface

public class Dog extends Animal implements
Pet { … }

68

Interfaces

Interfaces are extremely flexible because…
You can use interfaces instead of concrete
subclasses as arguments and return types
The classes that implement an interface can
come from any inheritance tree. This allows you
to treat an object by the role it plays and not the
class type used to instantiate it
A class can implement multiple interfaces

69

Review

You can not extend two classes in Java

An interface allows multiple inheritance
without the complications of Multiple
Inheritance

An interface has all abstract methods

A class can inherit multiple interfaces

