S1181 Java and Eclipse for the Beginner Programming Hands-on Lab
Part 1

In this introductory hands-on lab session you will be using the open source
Eclipse development environment. The Eclipse IDE provides all of the tools
necessary to build, compile and run Java applications.

From the lab machine look for JavalLabs folder and double click it. You will see
either a list of the files or icons as seen below.

Javalabs Denver ]

Fie Edit View Favorites Tools Help
@Ba:k_v u - E__j@'j|}f)5&arch | Folders |||_}- B

J o] J J

Exercse  Lab3 Runtime  Sessions Sessions
Imports Austin Denver
Eclipse JsrUtil Eclipse EdlipseEE Java Source

Reports

[

The lab instructor will demonstrate how to use Eclipse tool (already loaded) on

the lab machines. Please look for Eclipse icon on your desk top and click to
open the tool. You should see the following visualization...

= 1
eclipse

Europa




The Welcome page:

[@Java - CommandLine/src/EchoAres.java - Eclipse Platform’ e =cF [ OF3
Fle Edit Source Refactor MNavigate Search Project Run Window Help
%) Weicome 2 - B fB=-

Please note: You'll see the Welcome page only on the first entry into Eclipse.

Once Eclipse has loaded, create a new project by selecting File -> New ->
Java Project.



Run Window Help

9 Project... 3
Close Ctril+WwW # Package
Close All Ctri+Shift+wW & Class
Interface
=] save Ctri+S ot
& Enum
o SSaBe... @ Annotation
=) Save All Ctri+Shift+S
@ el &9 Source Folder
rRevert
% Folder
Move... [$ File
Rename... F2 [E} Untitled Text File
Refresh FS [E¥ JUNit Test Case
Convert Line Delimiters To »| ¥ Task
& Print... Ctri+pP 4 Example...
Switch Workspace *| S Other...
=3 Import...
ey Export...
Properties Alt+Enter

1 SumAverage.java [SumAverage/src]
2 DowWhileLoop.java [DoWhileLoop/src]
3 LooplLabel.java [LoopLabel/src]

4 HelloWorld.java [HelloWorld/src]

Exit

In the Project Name text box, enter JEFB, which stands for “Java and Eclipse
for the Beginner” and click Finish. This will create a new project in Eclipse,
which will contain our lab exercises.



Create a Java project
Create a Java project in the workspace or in an external location.

Project name: JEFB| |
-~ Contents

& Create new project in workspace
(O Create project from existing source

Directory: ] C:\Documents and Settings\Administrator\workspace\JEFB [ Browse...
~JRE

(& Use default JRE (Currently 'jrel1.5.0_14") n r fault. ..

O Use a project specific JRE: jrel.5.0_14

C Use an execution environment JRE: 1050 -1 &

~ Project layout

O Use project folder as root for sources and class files
& Create separate folders for sources and class files Configure default...

~ Working sets
[] Add project to working sets

Workinig sets: Select...

@ <gack [ Next> || Fnsh || cancel |

Once the new JEFB project has been created, select File and Import



'®Java - Eclipse Platform

- Edit Source Refactor Navigate Search Project
New Alt+Shift+N >
Open File...

Close Ctri+-wW

Close All Ctrl+sShift+=w
& save Ctri+S
B save As...
@ save Al Ctri+Shift+S

Revert

Move...

Rename... 2

Refresh FS

Convert Line Delimiters To >
& Print... Ctri+P

Switch Workspace >

Properties Alt+Enter

1 SumAverage.java [SumAverage/src]

2 DowhieLoop.java [DowhileLoop/src]

3 LooplLabel.java [LooplLabel/src]

4 Helloworld.java [HelloWworld/src]

Exit

Select General folder Archive file and click Next.



Selé:t

Import resources from an archive file ir

Select an import source:

vpe filter text]

Click the Browse button to the right of the From Archive file: text box and
search for the folder under
Desktop > Javalabs Denver > Exercise Imports

Import from directory

Select a directory to import from.

@ Desktop
FE'| My Documents
§' My Computer
& My Network Places
I cAGI
[h Javalabs Austin
=l [T Javalabs Denver
= @ Exercise Imports
() JavaDoc
(= JsrUtil
[Z) Reports
I Lab3 Runtime

[h Ceccinne Nanuar

Eolder: I Exercise Imports

Make New Folder | oK I
Import from Archive File

Look in: I@ Exercise Imports

ﬁ JavaDoc
My Recent Reports
Documents S1181JEFBLabl.zip

i S11821EFBLab2.zip




Click to Select S1181JEFBLabl.zip
Click the + to expand the contents of the zip file which will be selected by default.

6 & Import

Archive file

Import the contents of an arch

From archive file: I C:\Documetr
= el

#-[#] = CommandLine
#-[7] & DowhieLoop
#-[7]&= LoopLabel
w-[7]c= SumAverage

and click Finish. Repeat for S1182JEFBLab2.zip.

If you receive any messages asking about whether Eclipse should overwrite
certain files, such as the .classpath file, then click Yes To All.

Once the project has been imported, you will be presented with the Java
Perspective, which shows the project you have just imported. This project can
be expanded, by clicking the “plus” symbol to the left of the project name.

= =2 DEFB \

Note: you will see either JEFB (Java and Eclipse For the Beginner) as shown.
% Package 22 Tt 'ie'?“.:hﬂ. :

=

L]

N=E=1 JEFB

o= JRE System Library [jdk1
i-(= CommandLine

iz DoWhieLoop

i-= LoopLabel

H-(= SumAverage

----- examplel.txt

----- £ example2.txt

----- FilePrinter.java

oy FOUOR e OO oy IO e OO |




Also notice the tasks view in the bottom-right of the screen. This reports that
two compilation errors currently exist in the project. These will be resolved as
part of the exercises...

Exercise #1 Labeled for Loops and break Statement

In the following code example LoopLabel, you will have the opportunity to code
a Java class, method using most of the basic construct introduced in the
lecture. Please pay attention to the purpose of the label “myloop”. In the for
loop, when a particular condition is met, a break statement would exist the
inner loop and resume execution with the outer loop. The code exercise below
contains a nested for loop. Inside the innermost loop, if the summed values of
the two counters is greater than 5 both loops exit at once.

You can either cut-n-paste the code below or type as is into LoopLabel.java
file under the LoopLabel folder. The purpose of exercise #1 is for you to get
comfortable with the Java perspective, using the Java editor, syntax check,
save and run the Java application, and see the result set under the console
view. If you are familiar with Eclipse, please skip ahead to Exercise #2.

public class LoopLabel {
public static void main (String arguments|[]) {

myloop:
for (inti =1;1<=6; i++)
for (intj=1;j<=4; j++) {
System.out.printin(iis " + i+ ", jis" +J);
if ((i+]) >05)
break myloop;

by
System.out.printin("End of loops");

}
}

After you have completed the code snippet, Ctrl+S to save or simply click on

the é] Save icon. You are now ready to Run the LoopLabel.java



Remember to do a save every time you make changes to the code before
running the application.

Typically you can run Java application by right click inside the editor of
LoopLabel.java. Select the Run As in the pop-up window and click Java
Application.

1) LoopLabeljava &

public class LoopLabel {
S public static void main (String arguments[]) {

myloop:
for (int i = 1; i <= 6; i++)
for (imt j = 1; j <= 4; J++) {

System.ocnt.println(™i is ™ + 1 + ", J ds " + 3J);
If (( £+ F) > 5)
break myloop;
}
System.out.println("End of loops");

& Undco Ctri=-Z

Open Declaration F3
Open Type Hierarchy

Open Call Hierarchy

Quick Outline Ctri+0O
Quick Type Hierarchy Ctri+T

Show In Alt+Shift+W L

. Problems @ s R %R ks (& 2 B2

.

<terminated> Lo " S

__14\bin\javaw.exe (Aug 4, 2008 1:06:43 PM)

— 0" — - (V,
Paste Ctri+Vv
Source Alt+Shift+S
Refactor Alt+Shift+T
Local History

References
Declarations

Add to Snippets...

B

. RunAs » 511 Java

Debug As » = )
e e ._LO Open Run Dialog...

Valdate

Team r By

Compare With
Replace With

Or you can run the LoopLabel.java application by point and click on the run

menu icon ﬂ from the toolbar (see below) and click on Run As... Java




Application. The run menu toolbar also has the Open Run Dialog that you
will be using with the Command-line exercises.

Fie Edit

Source Refactor Navigate Search Project Run Window Help
MN-HOi%-0"-Q- iBBG- MO S if -5 OO~

You should see the result set in the console view below:

public class LoopLabel {
public static void main (String arguments[]) {

m£§oop:

for (int i
for (int j

System.out.println("End of loops");

System.

$E (L 1 # 3 5 5)
break myloop;

}

= 1; i <= 6; i++)
= 1; §J <= 4; 3+8) |
out.println(”i is " + i + ", j is " + j);

2. problems | @ Javadoc [, Declaration | & Console 2

w X% Lkl &4

is
is
is
is
is
is
is
is

P N

1.
1,
1,
1,
2,
2r
2,
2,

J
3

{0 Py 0 P Dy P

3

is
is
is
is
is
is
is=
is

End of loops

A

[N PR S T e S PR S

<terminated> LoopLabel [Java Application] C:\Program Files\Java\jre1.5.0_14\bin\javaw.exe (Aug 4, 2008




Exercise #2 The do...while Loops

Please complete the following DoWhileLoop by providing a do while loop that
will print a message each time the loop iterates “Looping, round # “ 1 through
10. Keep in mind that the body of the loop executes at least once with do loops.

1. Open the DoWhileLoop.java file under the DoWhileLoop folder

= =2 DowWhielLoop
=8 src
=8 (default package)
= [J] DowhileLoop.java
= G DowhileLoop
e main(String[])

2. You now need to declare an integer variable and a do while loop.

// TO DO:
// Declare an integer variable with an initial value of 1

class DoWhileLoop {
public static void main (String arguments[]) {

int

// TO DO:
// A print statement of “Looping, round # “ and the number,

increment the variable by 1 on each iteration, and exit when the
variable reached number 10.

do {
System.out.

¥
while O;

}



After you have the clean code (no more x), Ctrl+S to save or simply click on

the EJ Save icon. You are now right to Run the DoWhileLoop.java

le Solution for Exercise #2:

bop.java 2

class DoWhileLoop ﬂ
public static

int a = 1;
do {

System.cut.println("Looping,
at++;

}
while (a <= 10);

}

round

D@id main (String arguments[]) {

€ " + a);

B2 Problems | @ Javadoc [[© Dedlaration | & Console 2

=B“

<terminated> DoWhieLoop [Java Application] C:\Program « 38 & [ LH & | &8 == &

-

Looping,
Looping,
Looping,
Looping,
Looping,
Looping,
Looping,
Looping,
Looping,
Looping,

round
round
round
round
round
round
round
round
round
round

L O
oM~k wh e




Exercise #2-1 Adding a System.out.println statement after the do while loop
(Optional exercise)

class DoWhileLoop {
public static void main (String arguments[]) {
inta = 1;

do {
System.out.printin("Looping, round # " + a);
a++;
be
while (a <= 10);
System.out.printin(""Existing Do While Loop!");
by

Please note of the result set for the 2" System.out.println statement after the
do...while loop.



m Problems @ Javadoc (¢ Decaration & Console 53 =g
<termidted> DoWhieLoop [Java Appication] C:\Program = % % | hf @@ ME-

Looping, round # 1
Looping, round § 2
Looping, round # 3
Looping, round # 4
Looping, round # 5
Looping, round # 6
Looping, round § 7
Looping, round # 8
Looping, round # 9
Looping, round # 10
Existing Do While Loop!

Exercise #3 Java Applications and Command-Line Arguments

We are going to write a simple Java application that handle arguments from the
interactive Run dialog. Java stores the arguments as an array of strings and
passes the array to the application main() method. The fun part is that you can
use the arguments to determine how your application is going to run.

From the Java perspective, find the SumAverage folder and click on
SumAverage.java file.

// TO DO:
// declare a integer of sum and complete the for loop

public class SumAverage {
public static void main(String arguments[]) {
int

for (inti =0; i < arguments.; ) {
sum += Integer.parselnt();

by



// TO DO:
// Complete the print statement to read Sum is: .... between the (); and a
// second print statement to read Average is: ... between the ();

System.out.printin();
System.out.printin()
(float)sum / arguments.length);

To run the SumAverage.java application, click on the ﬂ Run menu icon and
select / click on Open Run Diaglog, a Run wizard pop-up will appear...

{2 Open Run Dialog...




Create, manage, and run configurations
Run a Java appiication @

@ [_ - .
b % ‘ £ Name:|SumAverage |

ltvﬂ;:f\::tppbt | © Main . = Arguments| =\ JRE| “; Classpath ¥ Source 7§ Environment [ Common| |
'
=17 Java Applcation R
-3 DoWhieLoop | SumAverage | [ Browse...
-[7] EchoArgs
[3] Heloworld - Main class:
~[3] LooplLabel
7] SlmAverage | SumAverage | [ Search...
Ju JUnit [ include system libraries when searching for a main class
% Ruby Appication [ Include inherited mains when searching for a main class
Jyy Task Context Test [J Stop in main
U Test::Unit
k

Apply Revert

Fiter matched 11 of 11 items

® Rin || Cose |

Click on Arguments tag to enter the arguments.



W
Create, manage, and run configurations @

Run a Java application

DE%X| B 3-

Name: [ SumAverage ]

type fiter text = - ~
| por— | '©® Main |®= Arguments " =4 JRE| “; Classpath| % Source| P Environment| = Common|
o[ Java Appication ~Program arguments:
77 DoWhieLoop 8910
[3] EchoArgs :
3] HellowWorld ;
m LoopLabeI . J
0 SumAverage ~VM arguments: -
Ju Junit
% Ruby Application
Juy Task Context Test
#U Test::Unit
Working directory: 7
@Defauk: | ${workspace_loc:SumAverage} |
O other: | |
Workspace... | | File System...| | Variables...
Apply Revert
Filter matched 11 of 11 items
@ | Run || cose |

The sample arguments used was 8, 9 and 10 (see Program arguments).
Remember to place a blank (hit the space bar once) between the arguments,
followed a click on the Run button, and check the result set in the Console
view.

Please note: you can use different set of arguments for this exercise.



Exercise #3 SumAverage.java Sample Result Set

[ SumAverage.java &3

public class SumAverage {
= public static void main(String arguments[]) {
int sum = 0;

for (int i = 0; 4i < arguments.length; i++) {
sum += Integer.parselnt(arguments[i]);

}

System.out.println("Sum is:
System.out.println("Average is:
(float)sum / arguments.length);

* 4+ =sum) ;
L 2

2. Problems | @ Javadoc | [ Dedlaration [ El Console 2
<terminated> SumAverage [Java Application] C:\Program ¥ ® 3 Gk &I

Sum is: 27
Average is: 9.0

Congratulations!
You have successfully completed the Lab session.

Thanks!



Optional Coding Exercise:

The following code sample allow you to repeat arguments that you enter from

the command-line and run from the open dialog.

You need to create a new Java project, a new Java class... You can simply click
on the J+ folder wizard to create a new Java Project And the New Java Class
wizard to create the java class... as to the naming of the project and class... try

CompareString or be creative.

Have fun!

Fie Edt Source Refactor Navigate Search Project Run Window Help
O is-0-Q- i BHE- BBF  J0 Y

i

(ERCR

BHFGG- BB Y

y] EY JUnit Test Case




Please see the sample result set below.

) EchoArgs java 33\

public class EchoArgs {

- [
¥ @param args
«f
= public static void main(String arquments[]) {
for (int i = 0; i < arquments.length; it+) {
System.out.println("Argument " + i + ":

}

¢
%

" + arguments[i]);

2. Problems @ Javadoc [, Decaration | & Console &3

X% Gl @

&

# 8-

<terminated> EchoArgs [Java Applcation] C:\Program Hes\]ava\jrel 5.0_14\bin\javaw.exe (Aug 6, 2008 10:53:45 AM)

Arqument 0: Welcome
Argument 1: to
Argument 2: SHARE
Argument 3: San
Argument 4: Jose




The crib sheet of Java syntax:
Java Comments:

s /* text */
= Java supports the familiar C-style comments /* text */
= The Java compiler ignores everything from /* to */
% /** documentation */
= A documentation or “doc” comment, used by the
javadoc tool
s // text
= The compiler ignores everything to the end of the line

Variables and Data Type:

% Variable declaration
= Name
* Can begin with letter, dollar sign, or underscore
* Followed by letters, underscores, dollar signs, or digits
 Convention is Upper case
= Type
« Java’s compiler cares about type
 Determines value and operations
s Two kinds of variables
= Primitive
= Object Reference

Primitive Types:

% Hold fundamental values (simple bit patterns)
= Numeric data types

* Integers
* 8-bit byte
* 16-bit short
 32-bitint
* 64-bit long

* Floating point numbers
* Real numeric types are 32-bit float and 64-bit double
= Booleans
« “TRUE”, “FALSE”, “YES”, “NO” or similar constructs
= Characters
e Char myChar = ‘A’;



Type Bit Depth Value Range
Boolean Varies True or False
char 16 bits 0 to 65535
byte 8 bits -128 to 127
short 16 bits -32768 to 32768
int 32 bits -2147483648 to 2147483647
long 64 bits -huge to huge
float 32 bits varies
double 64 bits varies
Reference Types:
s Anything that is not primitive
= Objects such as
e Strings
* Arrays
* Classes
* Interfaces
Operators — Arithmetic
Operator Use Description
+ opl + op2 adds opl and op2
- opl - op2 subtracts op2 from opl
opl * op2 multiplies opl by op2
/ opl / op2 Divides opl by op2
opl % op2 Computes remainder of dividing opl by op2

Operators — Increment / Decrement

Operator Use Description

++ op++ Increments op by 1; evaluates to the value of op
before it was incremented

++ ++op Increments op by 1; evaluates to the value of op

after it was incremented

-- op-- Decrements op by 1; evaluates to the value of op
before it was decremented

-- --op Decrements op by 1; evaluates to the value of op

after it was decremented




Operators — Relational

Return true if

Operator Use
> opl >op 2 opl is greater than op2
>= opl >= op2 opl is greater than or equal to op2
< opl < op2 opl is less than op2
<= opl <= op2 opl is less than or equal to op2
== opl == op2 opl and op2 are equal
1= opl !'= op2 opl and op2 are not equal

Operators — Conditional

Returns true if

Operator Use
&& opl && op 2 opl and op2 are both true, conditionally
evaluates op2
1 opl || op2 either opl or op2 is true, conditionally evaluates
op2
! I op op is false
& opl & op2 opl and op2 are both true, always evaluates opl
and op2
| opl | op2 either opl or op2 is true, always evaluates opl
and op2
7~ opl ™ op2 If opl and op2 are different — then if one of the

other of the operands is true but not both

Operators — Assignment

Operator Use Equivalent to
= opl =op 2 assign opl to the value in op2
+= opl -= op2 opl = opl + op2
-= opl < op2 opl = opl - op2
*= opl *= op2 opl = opl * op2
/= opl / op2 opl = opl / op2
%= opl %= op2 opl = opl % op2
= opl &= op2 opl = opl & op2
= opl |= op2 opl = opl | op2




